ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.11140
  4. Cited By
Variational Sequential Monte Carlo

Variational Sequential Monte Carlo

31 May 2017
C. A. Naesseth
Scott W. Linderman
Rajesh Ranganath
David M. Blei
    BDL
ArXivPDFHTML

Papers citing "Variational Sequential Monte Carlo"

50 / 65 papers shown
Title
Trust-Region Twisted Policy Improvement
Trust-Region Twisted Policy Improvement
Joery A. de Vries
Jinke He
Yaniv Oren
M. Spaan
OffRL
LRM
35
0
0
08 Apr 2025
Variational Pseudo Marginal Methods for Jet Reconstruction in Particle Physics
Variational Pseudo Marginal Methods for Jet Reconstruction in Particle Physics
Hanming Yang
A. Moretti
Sebastian Macaluso
Philippe Chlenski
C. A. Naesseth
I. Pe’er
BDL
47
1
0
03 Jan 2025
Learning state and proposal dynamics in state-space models using differentiable particle filters and neural networks
Learning state and proposal dynamics in state-space models using differentiable particle filters and neural networks
Benjamin Cox
Santiago Segarra
Victor Elvira
81
0
0
23 Nov 2024
Meta-Dynamical State Space Models for Integrative Neural Data Analysis
Meta-Dynamical State Space Models for Integrative Neural Data Analysis
Ayesha Vermani
Josue Nassar
Hyungju Jeon
Matthew Dowling
Il Memming Park
39
1
0
07 Oct 2024
Inferring stochastic low-rank recurrent neural networks from neural data
Inferring stochastic low-rank recurrent neural networks from neural data
Matthijs Pals
A Erdem Sağtekin
Felix Pei
Manuel Gloeckler
Jakob H Macke
43
7
0
24 Jun 2024
Revisiting semi-supervised training objectives for differentiable
  particle filters
Revisiting semi-supervised training objectives for differentiable particle filters
Jiaxi Li
John-Joseph Brady
Xiongjie Chen
Yunpeng Li
28
1
0
02 May 2024
Provably Scalable Black-Box Variational Inference with Structured
  Variational Families
Provably Scalable Black-Box Variational Inference with Structured Variational Families
Joohwan Ko
Kyurae Kim
W. Kim
Jacob R. Gardner
BDL
33
2
0
19 Jan 2024
Reparameterized Variational Rejection Sampling
Reparameterized Variational Rejection Sampling
M. Jankowiak
Du Phan
DRL
BDL
24
1
0
26 Sep 2023
Massively Parallel Reweighted Wake-Sleep
Massively Parallel Reweighted Wake-Sleep
Thomas Heap
Gavin Leech
Laurence Aitchison
BDL
24
2
0
18 May 2023
Cheap and Deterministic Inference for Deep State-Space Models of
  Interacting Dynamical Systems
Cheap and Deterministic Inference for Deep State-Space Models of Interacting Dynamical Systems
Andreas Look
M. Kandemir
Barbara Rakitsch
Jan Peters
BDL
38
6
0
02 May 2023
Resampling Gradients Vanish in Differentiable Sequential Monte Carlo
  Samplers
Resampling Gradients Vanish in Differentiable Sequential Monte Carlo Samplers
Johannes Zenn
Robert Bamler
39
3
0
27 Apr 2023
U-Statistics for Importance-Weighted Variational Inference
U-Statistics for Importance-Weighted Variational Inference
Javier Burroni
Kenta Takatsu
Justin Domke
Daniel Sheldon
18
1
0
27 Feb 2023
Statistical Distance Based Deterministic Offspring Selection in SMC
  Methods
Statistical Distance Based Deterministic Offspring Selection in SMC Methods
Oskar Kviman
Hazal Koptagel
Harald Melin
J. Lagergren
22
0
0
23 Dec 2022
Particle-Based Score Estimation for State Space Model Learning in
  Autonomous Driving
Particle-Based Score Estimation for State Space Model Learning in Autonomous Driving
Angad Singh
Omar Makhlouf
Maximilian Igl
Joao Messias
Arnaud Doucet
Shimon Whiteson
49
2
0
14 Dec 2022
Nonlinear System Identification: Learning while respecting physical
  models using a sequential Monte Carlo method
Nonlinear System Identification: Learning while respecting physical models using a sequential Monte Carlo method
A. Wigren
Johan Wågberg
Fredrik Lindsten
A. Wills
Thomas B. Schon
24
10
0
26 Oct 2022
Efficient variational approximations for state space models
Efficient variational approximations for state space models
Rubén Loaiza-Maya
D. Nibbering
11
1
0
20 Oct 2022
On Uncertainty in Deep State Space Models for Model-Based Reinforcement
  Learning
On Uncertainty in Deep State Space Models for Model-Based Reinforcement Learning
P. Becker
Gerhard Neumann
30
9
0
17 Oct 2022
A Variational Perspective on Generative Flow Networks
A Variational Perspective on Generative Flow Networks
Heiko Zimmermann
Fredrik Lindsten
Jan-Willem van de Meent
C. A. Naesseth
22
32
0
14 Oct 2022
Optimization of Annealed Importance Sampling Hyperparameters
Optimization of Annealed Importance Sampling Hyperparameters
Shirin Goshtasbpour
Fernando Perez-Cruz
27
1
0
27 Sep 2022
SIXO: Smoothing Inference with Twisted Objectives
SIXO: Smoothing Inference with Twisted Objectives
Dieterich Lawson
Allan Raventós
Andrew Warrington
Scott W. Linderman
BDL
18
15
0
13 Jun 2022
De-Sequentialized Monte Carlo: a parallel-in-time particle smoother
De-Sequentialized Monte Carlo: a parallel-in-time particle smoother
Adrien Corenflos
Nicolas Chopin
Simo Särkkä
29
6
0
04 Feb 2022
Continual Repeated Annealed Flow Transport Monte Carlo
Continual Repeated Annealed Flow Transport Monte Carlo
A. G. Matthews
Michael Arbel
Danilo Jimenez Rezende
Arnaud Doucet
OT
37
46
0
31 Jan 2022
Surrogate Likelihoods for Variational Annealed Importance Sampling
Surrogate Likelihoods for Variational Annealed Importance Sampling
M. Jankowiak
Du Phan
BDL
35
13
0
22 Dec 2021
A Variational Inference Approach to Inverse Problems with Gamma
  Hyperpriors
A Variational Inference Approach to Inverse Problems with Gamma Hyperpriors
Shivendra Agrawal
Hwanwoo Kim
D. Sanz-Alonso
A. Strang
6
10
0
26 Nov 2021
Online Variational Filtering and Parameter Learning
Online Variational Filtering and Parameter Learning
Andrew Campbell
Yuyang Shi
Tom Rainforth
Arnaud Doucet
BDL
32
21
0
26 Oct 2021
Unsupervised Learned Kalman Filtering
Unsupervised Learned Kalman Filtering
Guy Revach
Nir Shlezinger
Timur Locher
Xiaoyong Ni
Ruud J. G. van Sloun
Yonina C. Eldar
SSL
31
31
0
18 Oct 2021
HYPER: Learned Hybrid Trajectory Prediction via Factored Inference and
  Adaptive Sampling
HYPER: Learned Hybrid Trajectory Prediction via Factored Inference and Adaptive Sampling
Xin Huang
Guy Rosman
Igor Gilitschenski
A. Jasour
Stephen G. McGill
J. Leonard
B. Williams
28
26
0
05 Oct 2021
KalmanNet: Neural Network Aided Kalman Filtering for Partially Known
  Dynamics
KalmanNet: Neural Network Aided Kalman Filtering for Partially Known Dynamics
Guy Revach
Nir Shlezinger
Xiaoyong Ni
Adrià López Escoriza
Ruud J. G. van Sloun
Yonina C. Eldar
31
266
0
21 Jul 2021
On Incorporating Inductive Biases into VAEs
On Incorporating Inductive Biases into VAEs
Ning Miao
Emile Mathieu
N. Siddharth
Yee Whye Teh
Tom Rainforth
CML
DRL
30
10
0
25 Jun 2021
Nested Variational Inference
Nested Variational Inference
Heiko Zimmermann
Hao Wu
Babak Esmaeili
Jan-Willem van de Meent
BDL
32
20
0
21 Jun 2021
Differentiable Particle Filtering without Modifying the Forward Pass
Differentiable Particle Filtering without Modifying the Forward Pass
Adam Scibior
Frank Wood
28
19
0
18 Jun 2021
RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting
RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting
Soumyasundar Pal
Liheng Ma
Yingxue Zhang
Mark J. Coates
BDL
AI4TS
33
22
0
10 Jun 2021
Stein Variational Gradient Descent: many-particle and long-time
  asymptotics
Stein Variational Gradient Descent: many-particle and long-time asymptotics
Nikolas Nusken
D. M. Renger
29
22
0
25 Feb 2021
Differentiable Particle Filtering via Entropy-Regularized Optimal
  Transport
Differentiable Particle Filtering via Entropy-Regularized Optimal Transport
Adrien Corenflos
James Thornton
George Deligiannidis
Arnaud Doucet
OT
43
66
0
15 Feb 2021
Annealed Flow Transport Monte Carlo
Annealed Flow Transport Monte Carlo
Michael Arbel
A. G. Matthews
Arnaud Doucet
36
70
0
15 Feb 2021
End-To-End Semi-supervised Learning for Differentiable Particle Filters
End-To-End Semi-supervised Learning for Differentiable Particle Filters
Hao Wen
Xiongjie Chen
Georgios Papagiannis
Conghui Hu
Yunpeng Li
33
17
0
11 Nov 2020
Variational Dynamic Mixtures
Variational Dynamic Mixtures
Chen Qiu
Stephan Mandt
Maja R. Rudolph
BDL
AI4TS
16
2
0
20 Oct 2020
Variational Filtering with Copula Models for SLAM
Variational Filtering with Copula Models for SLAM
John D. Martin
Kevin Doherty
Caralyn Cyr
Brendan Englot
J. Leonard
29
3
0
02 Aug 2020
An invitation to sequential Monte Carlo samplers
An invitation to sequential Monte Carlo samplers
Chenguang Dai
J. Heng
Pierre E. Jacob
N. Whiteley
57
65
0
23 Jul 2020
Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and
  Optimization
Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and Optimization
Abhinav Agrawal
Daniel Sheldon
Justin Domke
TPM
BDL
13
38
0
18 Jun 2020
Markovian Score Climbing: Variational Inference with KL(p||q)
Markovian Score Climbing: Variational Inference with KL(p||q)
C. A. Naesseth
Fredrik Lindsten
David M. Blei
123
54
0
23 Mar 2020
Lazy object copy as a platform for population-based probabilistic
  programming
Lazy object copy as a platform for population-based probabilistic programming
Lawrence M. Murray
21
5
0
09 Jan 2020
Particle Smoothing Variational Objectives
Particle Smoothing Variational Objectives
A. Moretti
Zizhao Wang
Luhuan Wu
Iddo Drori
I. Pe’er
29
10
0
20 Sep 2019
Divide and Couple: Using Monte Carlo Variational Objectives for
  Posterior Approximation
Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation
Justin Domke
Daniel Sheldon
24
18
0
24 Jun 2019
Bias Correction of Learned Generative Models using Likelihood-Free
  Importance Weighting
Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting
Aditya Grover
Jiaming Song
Alekh Agarwal
Kenneth Tran
Ashish Kapoor
Eric Horvitz
Stefano Ermon
26
123
0
23 Jun 2019
Streaming Variational Monte Carlo
Streaming Variational Monte Carlo
Yuan Zhao
Josue Nassar
I. Jordan
M. Bugallo
Il Memming Park
BDL
34
21
0
04 Jun 2019
Particle Filter Recurrent Neural Networks
Particle Filter Recurrent Neural Networks
Xiao Ma
Peter Karkus
David Hsu
Wee Sun Lee
14
82
0
30 May 2019
Recurrent Kalman Networks: Factorized Inference in High-Dimensional Deep
  Feature Spaces
Recurrent Kalman Networks: Factorized Inference in High-Dimensional Deep Feature Spaces
P. Becker
Harit Pandya
Gregor H. W. Gebhardt
Cheng Zhao
James Taylor
Gerhard Neumann
BDL
18
94
0
17 May 2019
Particle Flow Bayes' Rule
Particle Flow Bayes' Rule
Xinshi Chen
H. Dai
Le Song
16
9
0
02 Feb 2019
Learning Nonlinear State Space Models with Hamiltonian Sequential Monte
  Carlo Sampler
Learning Nonlinear State Space Models with Hamiltonian Sequential Monte Carlo Sampler
Duo Xu
26
2
0
03 Jan 2019
12
Next