Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.07878
Cited By
TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning
22 May 2017
W. Wen
Cong Xu
Feng Yan
Chunpeng Wu
Yandan Wang
Yiran Chen
Hai Helen Li
Re-assign community
ArXiv
PDF
HTML
Papers citing
"TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning"
50 / 467 papers shown
Title
Decentralized Stochastic Optimization and Gossip Algorithms with Compressed Communication
Anastasia Koloskova
Sebastian U. Stich
Martin Jaggi
FedML
25
503
0
01 Feb 2019
Error Feedback Fixes SignSGD and other Gradient Compression Schemes
Sai Praneeth Karimireddy
Quentin Rebjock
Sebastian U. Stich
Martin Jaggi
27
493
0
28 Jan 2019
99% of Distributed Optimization is a Waste of Time: The Issue and How to Fix it
Konstantin Mishchenko
Filip Hanzely
Peter Richtárik
16
13
0
27 Jan 2019
PruneTrain: Fast Neural Network Training by Dynamic Sparse Model Reconfiguration
Sangkug Lym
Esha Choukse
Siavash Zangeneh
W. Wen
Sujay Sanghavi
M. Erez
CVBM
12
88
0
26 Jan 2019
Distributed Learning with Compressed Gradient Differences
Konstantin Mishchenko
Eduard A. Gorbunov
Martin Takáč
Peter Richtárik
21
198
0
26 Jan 2019
Trajectory Normalized Gradients for Distributed Optimization
Jianqiao Wangni
Ke Li
Jianbo Shi
Jitendra Malik
27
2
0
24 Jan 2019
Backprop with Approximate Activations for Memory-efficient Network Training
Ayan Chakrabarti
Benjamin Moseley
24
37
0
23 Jan 2019
Accelerated Training for CNN Distributed Deep Learning through Automatic Resource-Aware Layer Placement
Jay H. Park
Sunghwan Kim
Jinwon Lee
Myeongjae Jeon
S. Noh
27
11
0
17 Jan 2019
A Distributed Synchronous SGD Algorithm with Global Top-
k
k
k
Sparsification for Low Bandwidth Networks
Shaoshuai Shi
Qiang-qiang Wang
Kaiyong Zhao
Zhenheng Tang
Yuxin Wang
Xiang Huang
Xuming Hu
40
135
0
14 Jan 2019
Quantized Epoch-SGD for Communication-Efficient Distributed Learning
Shen-Yi Zhao
Hao Gao
Wu-Jun Li
FedML
22
3
0
10 Jan 2019
Bandwidth Reduction using Importance Weighted Pruning on Ring AllReduce
Zehua Cheng
Zhenghua Xu
22
8
0
06 Jan 2019
Machine Learning at the Wireless Edge: Distributed Stochastic Gradient Descent Over-the-Air
Mohammad Mohammadi Amiri
Deniz Gunduz
30
53
0
03 Jan 2019
Per-Tensor Fixed-Point Quantization of the Back-Propagation Algorithm
Charbel Sakr
Naresh R Shanbhag
MQ
25
43
0
31 Dec 2018
Stanza: Layer Separation for Distributed Training in Deep Learning
Xiaorui Wu
Hongao Xu
Bo Li
Y. Xiong
MoE
28
9
0
27 Dec 2018
Learning Private Neural Language Modeling with Attentive Aggregation
Shaoxiong Ji
Shirui Pan
Guodong Long
Xue Li
Jing Jiang
Zi Huang
FedML
MoMe
18
137
0
17 Dec 2018
Compressed Distributed Gradient Descent: Communication-Efficient Consensus over Networks
Xin Zhang
Jia Liu
Zhengyuan Zhu
Elizabeth S. Bentley
10
27
0
10 Dec 2018
No Peek: A Survey of private distributed deep learning
Praneeth Vepakomma
Tristan Swedish
Ramesh Raskar
O. Gupta
Abhimanyu Dubey
SyDa
FedML
30
100
0
08 Dec 2018
Wireless Network Intelligence at the Edge
Jihong Park
S. Samarakoon
M. Bennis
Mérouane Debbah
23
518
0
07 Dec 2018
MG-WFBP: Efficient Data Communication for Distributed Synchronous SGD Algorithms
Shaoshuai Shi
Xiaowen Chu
Bo Li
FedML
24
89
0
27 Nov 2018
Stochastic Gradient Push for Distributed Deep Learning
Mahmoud Assran
Nicolas Loizou
Nicolas Ballas
Michael G. Rabbat
30
343
0
27 Nov 2018
SuperNeurons: FFT-based Gradient Sparsification in the Distributed Training of Deep Neural Networks
Linnan Wang
Wei Wu
Junyu Zhang
Hang Liu
G. Bosilca
Maurice Herlihy
Rodrigo Fonseca
GNN
23
5
0
21 Nov 2018
Pipe-SGD: A Decentralized Pipelined SGD Framework for Distributed Deep Net Training
Youjie Li
Hang Qiu
Songze Li
A. Avestimehr
Nam Sung Kim
Alex Schwing
FedML
24
104
0
08 Nov 2018
GradiVeQ: Vector Quantization for Bandwidth-Efficient Gradient Aggregation in Distributed CNN Training
Timo C. Wunderlich
Zhifeng Lin
S. A. Aamir
Andreas Grübl
Youjie Li
David Stöckel
Alex Schwing
M. Annavaram
A. Avestimehr
MQ
19
64
0
08 Nov 2018
A Hitchhiker's Guide On Distributed Training of Deep Neural Networks
K. Chahal
Manraj Singh Grover
Kuntal Dey
3DH
OOD
6
53
0
28 Oct 2018
Distributed Learning over Unreliable Networks
Chen Yu
Hanlin Tang
Cédric Renggli
S. Kassing
Ankit Singla
Dan Alistarh
Ce Zhang
Ji Liu
OOD
25
60
0
17 Oct 2018
signSGD with Majority Vote is Communication Efficient And Fault Tolerant
Jeremy Bernstein
Jiawei Zhao
Kamyar Azizzadenesheli
Anima Anandkumar
FedML
31
46
0
11 Oct 2018
Dynamic Sparse Graph for Efficient Deep Learning
L. Liu
Lei Deng
Xing Hu
Maohua Zhu
Guoqi Li
Yufei Ding
Yuan Xie
GNN
40
42
0
01 Oct 2018
The Convergence of Sparsified Gradient Methods
Dan Alistarh
Torsten Hoefler
M. Johansson
Sarit Khirirat
Nikola Konstantinov
Cédric Renggli
30
489
0
27 Sep 2018
Sparsified SGD with Memory
Sebastian U. Stich
Jean-Baptiste Cordonnier
Martin Jaggi
41
740
0
20 Sep 2018
Cooperative SGD: A unified Framework for the Design and Analysis of Communication-Efficient SGD Algorithms
Jianyu Wang
Gauri Joshi
33
348
0
22 Aug 2018
Don't Use Large Mini-Batches, Use Local SGD
Tao R. Lin
Sebastian U. Stich
Kumar Kshitij Patel
Martin Jaggi
57
429
0
22 Aug 2018
RedSync : Reducing Synchronization Traffic for Distributed Deep Learning
Jiarui Fang
Haohuan Fu
Guangwen Yang
Cho-Jui Hsieh
GNN
22
25
0
13 Aug 2018
A Survey on Methods and Theories of Quantized Neural Networks
Yunhui Guo
MQ
34
232
0
13 Aug 2018
DFTerNet: Towards 2-bit Dynamic Fusion Networks for Accurate Human Activity Recognition
Zhan Yang
Osolo Ian Raymond
Chengyuan Zhang
Ying Wan
J. Long
CVBM
47
36
0
31 Jul 2018
Parallel Restarted SGD with Faster Convergence and Less Communication: Demystifying Why Model Averaging Works for Deep Learning
Hao Yu
Sen Yang
Shenghuo Zhu
MoMe
FedML
38
597
0
17 Jul 2018
Error Compensated Quantized SGD and its Applications to Large-scale Distributed Optimization
Jiaxiang Wu
Weidong Huang
Junzhou Huang
Tong Zhang
24
235
0
21 Jun 2018
Distributed learning with compressed gradients
Sarit Khirirat
Hamid Reza Feyzmahdavian
M. Johansson
33
83
0
18 Jun 2018
ATOMO: Communication-efficient Learning via Atomic Sparsification
Hongyi Wang
Scott Sievert
Zachary B. Charles
Shengchao Liu
S. Wright
Dimitris Papailiopoulos
22
351
0
11 Jun 2018
The Effect of Network Width on the Performance of Large-batch Training
Lingjiao Chen
Hongyi Wang
Jinman Zhao
Dimitris Papailiopoulos
Paraschos Koutris
29
22
0
11 Jun 2018
Structurally Sparsified Backward Propagation for Faster Long Short-Term Memory Training
Maohua Zhu
Jason Clemons
Jeff Pool
Minsoo Rhu
S. Keckler
Yuan Xie
21
13
0
01 Jun 2018
On Consensus-Optimality Trade-offs in Collaborative Deep Learning
Zhanhong Jiang
Aditya Balu
Chinmay Hegde
Soumik Sarkar
FedML
33
7
0
30 May 2018
cpSGD: Communication-efficient and differentially-private distributed SGD
Naman Agarwal
A. Suresh
Felix X. Yu
Sanjiv Kumar
H. B. McMahan
FedML
28
486
0
27 May 2018
Scalable Methods for 8-bit Training of Neural Networks
Ron Banner
Itay Hubara
Elad Hoffer
Daniel Soudry
MQ
54
332
0
25 May 2018
Double Quantization for Communication-Efficient Distributed Optimization
Yue Yu
Jiaxiang Wu
Longbo Huang
MQ
19
57
0
25 May 2018
LAG: Lazily Aggregated Gradient for Communication-Efficient Distributed Learning
Tianyi Chen
G. Giannakis
Tao Sun
W. Yin
34
297
0
25 May 2018
Local SGD Converges Fast and Communicates Little
Sebastian U. Stich
FedML
85
1,047
0
24 May 2018
Approximate Random Dropout
Zhuoran Song
Ru Wang
Dongyu Ru
Hongru Huang
Zhenghao Peng
Hai Zhao
Xiaoyao Liang
Li Jiang
BDL
30
9
0
23 May 2018
Sparse Binary Compression: Towards Distributed Deep Learning with minimal Communication
Felix Sattler
Simon Wiedemann
K. Müller
Wojciech Samek
MQ
36
212
0
22 May 2018
Faster Neural Network Training with Approximate Tensor Operations
Menachem Adelman
Kfir Y. Levy
Ido Hakimi
M. Silberstein
31
26
0
21 May 2018
Compressed Coded Distributed Computing
Songze Li
M. Maddah-ali
A. Avestimehr
24
35
0
05 May 2018
Previous
1
2
3
...
10
8
9
Next