Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.07878
Cited By
TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning
22 May 2017
W. Wen
Cong Xu
Feng Yan
Chunpeng Wu
Yandan Wang
Yiran Chen
Hai Helen Li
Re-assign community
ArXiv
PDF
HTML
Papers citing
"TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning"
50 / 467 papers shown
Title
Communication Compression for Byzantine Robust Learning: New Efficient Algorithms and Improved Rates
Ahmad Rammal
Kaja Gruntkowska
Nikita Fedin
Eduard A. Gorbunov
Peter Richtárik
50
5
0
15 Oct 2023
FLrce: Resource-Efficient Federated Learning with Early-Stopping Strategy
Ziru Niu
Senior Member Ieee Hai Dong
•. A. K. Qin
Senior Member Ieee Tao Gu
33
4
0
15 Oct 2023
Fundamental Limits of Distributed Optimization over Multiple Access Channel
Shubham K. Jha
36
1
0
05 Oct 2023
CORE: Common Random Reconstruction for Distributed Optimization with Provable Low Communication Complexity
Pengyun Yue
Hanzheng Zhao
Cong Fang
Di He
Liwei Wang
Zhouchen Lin
Song-Chun Zhu
42
1
0
23 Sep 2023
FusionAI: Decentralized Training and Deploying LLMs with Massive Consumer-Level GPUs
Zhenheng Tang
Yuxin Wang
Xin He
Longteng Zhang
Xinglin Pan
...
Rongfei Zeng
Kaiyong Zhao
Shaoshuai Shi
Bingsheng He
Xuming Hu
46
30
0
03 Sep 2023
TinyProp -- Adaptive Sparse Backpropagation for Efficient TinyML On-device Learning
Marcus Rüb
Daniel Maier
Daniel Mueller-Gritschneder
Patrick Selle
36
3
0
17 Aug 2023
Distributed Extra-gradient with Optimal Complexity and Communication Guarantees
Ali Ramezani-Kebrya
Kimon Antonakopoulos
Igor Krawczuk
Justin Deschenaux
V. Cevher
41
3
0
17 Aug 2023
Stochastic Controlled Averaging for Federated Learning with Communication Compression
Xinmeng Huang
Ping Li
Xiaoyun Li
43
199
0
16 Aug 2023
Private Federated Learning with Autotuned Compression
Enayat Ullah
Christopher A. Choquette-Choo
Peter Kairouz
Sewoong Oh
FedML
21
6
0
20 Jul 2023
Accelerating Distributed ML Training via Selective Synchronization
S. Tyagi
Martin Swany
FedML
46
3
0
16 Jul 2023
Optimal Compression of Unit Norm Vectors in the High Distortion Regime
He Zhu
Avishek Ghosh
A. Mazumdar
19
3
0
16 Jul 2023
Improved Convergence Analysis and SNR Control Strategies for Federated Learning in the Presence of Noise
Antesh Upadhyay
Abolfazl Hashemi
49
9
0
14 Jul 2023
Fedward: Flexible Federated Backdoor Defense Framework with Non-IID Data
Zekai Chen
Fuyi Wang
Zhiwei Zheng
Ximeng Liu
Yujie Lin
FedML
AAML
47
3
0
01 Jul 2023
Adaptive Compression in Federated Learning via Side Information
Berivan Isik
Francesco Pase
Deniz Gunduz
Sanmi Koyejo
Tsachy Weissman
M. Zorzi
FedML
36
9
0
22 Jun 2023
An Efficient Virtual Data Generation Method for Reducing Communication in Federated Learning
Cheng Yang
Xue Yang
Dongxian Wu
Xiaohu Tang
FedML
29
0
0
21 Jun 2023
Evaluation and Optimization of Gradient Compression for Distributed Deep Learning
Lin Zhang
Longteng Zhang
Shaoshuai Shi
Xiaowen Chu
Bo Li
OffRL
25
7
0
15 Jun 2023
Exact Optimality of Communication-Privacy-Utility Tradeoffs in Distributed Mean Estimation
Berivan Isik
Wei-Ning Chen
Ayfer Özgür
Tsachy Weissman
Albert No
63
19
0
08 Jun 2023
Global-QSGD: Practical Floatless Quantization for Distributed Learning with Theoretical Guarantees
Jihao Xin
Marco Canini
Peter Richtárik
Samuel Horváth
43
2
0
29 May 2023
Reducing Communication for Split Learning by Randomized Top-k Sparsification
Fei Zheng
Chaochao Chen
Lingjuan Lyu
Binhui Yao
FedML
31
10
0
29 May 2023
Knowledge Distillation Performs Partial Variance Reduction
M. Safaryan
Alexandra Peste
Dan Alistarh
30
6
0
27 May 2023
Unbiased Compression Saves Communication in Distributed Optimization: When and How Much?
Yutong He
Xinmeng Huang
Kun Yuan
31
9
0
25 May 2023
Lower Bounds and Accelerated Algorithms in Distributed Stochastic Optimization with Communication Compression
Yutong He
Xinmeng Huang
Yiming Chen
W. Yin
Kun Yuan
36
7
0
12 May 2023
Joint Compression and Deadline Optimization for Wireless Federated Learning
Maojun Zhang
Yongqian Li
Dongzhu Liu
Richeng Jin
Guangxu Zhu
Caijun Zhong
Tony Q. S. Quek
37
5
0
06 May 2023
A Survey on Approximate Edge AI for Energy Efficient Autonomous Driving Services
Dewant Katare
Diego Perino
J. Nurmi
M. Warnier
Marijn Janssen
Aaron Yi Ding
36
36
0
13 Apr 2023
Approximate Wireless Communication for Federated Learning
Xiang Ma
Haijian Sun
R. Hu
Y. Qian
17
3
0
06 Apr 2023
Privacy Amplification via Compression: Achieving the Optimal Privacy-Accuracy-Communication Trade-off in Distributed Mean Estimation
Wei-Ning Chen
Danni Song
Ayfer Özgür
Peter Kairouz
FedML
34
25
0
04 Apr 2023
SparDL: Distributed Deep Learning Training with Efficient Sparse Communication
Minjun Zhao
Yichen Yin
Yuren Mao
Qing Liu
Lu Chen
Yunjun Gao
26
1
0
03 Apr 2023
Communication-Efficient Design for Quantized Decentralized Federated Learning
L. Chen
Wei Liu
Yunfei Chen
Weidong Wang
FedML
MQ
60
14
0
15 Mar 2023
FedREP: A Byzantine-Robust, Communication-Efficient and Privacy-Preserving Framework for Federated Learning
Yi-Rui Yang
Kun Wang
Wulu Li
FedML
52
3
0
09 Mar 2023
Boosting Distributed Full-graph GNN Training with Asynchronous One-bit Communication
Mengdie Zhang
Qi Hu
Peng Sun
Yonggang Wen
Tianwei Zhang
GNN
40
5
0
02 Mar 2023
FederatedTrust: A Solution for Trustworthy Federated Learning
Pedro Miguel Sánchez Sánchez
Alberto Huertas Celdrán
Ning Xie
Gérome Bovet
Gregorio Martínez Pérez
Burkhard Stiller
38
21
0
20 Feb 2023
Magnitude Matters: Fixing SIGNSGD Through Magnitude-Aware Sparsification in the Presence of Data Heterogeneity
Richeng Jin
Xiaofan He
C. Zhong
Zhaoyang Zhang
Tony Q.S. Quek
H. Dai
FedML
26
1
0
19 Feb 2023
Breaking the Communication-Privacy-Accuracy Tradeoff with
f
f
f
-Differential Privacy
Richeng Jin
Z. Su
C. Zhong
Zhaoyang Zhang
Tony Q.S. Quek
H. Dai
FedML
42
2
0
19 Feb 2023
THC: Accelerating Distributed Deep Learning Using Tensor Homomorphic Compression
Minghao Li
Ran Ben-Basat
S. Vargaftik
Chon-In Lao
Ke Xu
Michael Mitzenmacher
Minlan Yu Harvard University
31
15
0
16 Feb 2023
Sparse-SignSGD with Majority Vote for Communication-Efficient Distributed Learning
Chanho Park
Namyoon Lee
FedML
35
3
0
15 Feb 2023
Federated Learning with Regularized Client Participation
Grigory Malinovsky
Samuel Horváth
Konstantin Burlachenko
Peter Richtárik
FedML
36
13
0
07 Feb 2023
DoCoFL: Downlink Compression for Cross-Device Federated Learning
Ron Dorfman
S. Vargaftik
Y. Ben-Itzhak
Kfir Y. Levy
FedML
37
19
0
01 Feb 2023
Optimus-CC: Efficient Large NLP Model Training with 3D Parallelism Aware Communication Compression
Jaeyong Song
Jinkyu Yim
Jaewon Jung
Hongsun Jang
H. Kim
Youngsok Kim
Jinho Lee
GNN
34
25
0
24 Jan 2023
M22: A Communication-Efficient Algorithm for Federated Learning Inspired by Rate-Distortion
Yangyi Liu
Stefano Rini
Sadaf Salehkalaibar
Jun Chen
FedML
21
4
0
23 Jan 2023
ScaDLES: Scalable Deep Learning over Streaming data at the Edge
S. Tyagi
Martin Swany
25
6
0
21 Jan 2023
AutoDDL: Automatic Distributed Deep Learning with Near-Optimal Bandwidth Cost
Jinfan Chen
Shigang Li
Ran Guo
Jinhui Yuan
Torsten Hoefler
31
2
0
17 Jan 2023
Temporal Difference Learning with Compressed Updates: Error-Feedback meets Reinforcement Learning
A. Mitra
George J. Pappas
Hamed Hassani
33
12
0
03 Jan 2023
Deep Hierarchy Quantization Compression algorithm based on Dynamic Sampling
W. Jiang
Gang Liu
Xiaofeng Chen
Yipeng Zhou
FedML
24
0
0
30 Dec 2022
Adaptive Control of Client Selection and Gradient Compression for Efficient Federated Learning
Zhida Jiang
Yang Xu
Hong-Ze Xu
Zhiyuan Wang
Chen Qian
28
9
0
19 Dec 2022
Communication-Efficient Federated Learning for Heterogeneous Edge Devices Based on Adaptive Gradient Quantization
Heting Liu
Fang He
Guohong Cao
FedML
MQ
37
24
0
16 Dec 2022
Distributed Deep Reinforcement Learning: A Survey and A Multi-Player Multi-Agent Learning Toolbox
Qiyue Yin
Tongtong Yu
S. Shen
Jun Yang
Meijing Zhao
Kaiqi Huang
Bin Liang
Liangsheng Wang
OffRL
33
13
0
01 Dec 2022
Linear Convergent Distributed Nash Equilibrium Seeking with Compression
Xiaomeng Chen
Yuchi Wu
Xinlei Yi
Minyi Huang
Ling Shi
16
4
0
15 Nov 2022
Adaptive Compression for Communication-Efficient Distributed Training
Maksim Makarenko
Elnur Gasanov
Rustem Islamov
Abdurakhmon Sadiev
Peter Richtárik
52
14
0
31 Oct 2022
L-GreCo: Layerwise-Adaptive Gradient Compression for Efficient and Accurate Deep Learning
Mohammadreza Alimohammadi
I. Markov
Elias Frantar
Dan Alistarh
37
5
0
31 Oct 2022
FedGRec: Federated Graph Recommender System with Lazy Update of Latent Embeddings
Junyi Li
Heng-Chiao Huang
FedML
24
6
0
25 Oct 2022
Previous
1
2
3
4
5
...
8
9
10
Next