Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.07878
Cited By
TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning
22 May 2017
W. Wen
Cong Xu
Feng Yan
Chunpeng Wu
Yandan Wang
Yiran Chen
Hai Helen Li
Re-assign community
ArXiv
PDF
HTML
Papers citing
"TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning"
50 / 467 papers shown
Title
E2-Train: Training State-of-the-art CNNs with Over 80% Energy Savings
Yue Wang
Ziyu Jiang
Xiaohan Chen
Pengfei Xu
Yang Katie Zhao
Yingyan Lin
Zhangyang Wang
MQ
29
83
0
29 Oct 2019
Gradient Sparification for Asynchronous Distributed Training
Zijie Yan
FedML
11
1
0
24 Oct 2019
Q-GADMM: Quantized Group ADMM for Communication Efficient Decentralized Machine Learning
Anis Elgabli
Jihong Park
Amrit Singh Bedi
Chaouki Ben Issaid
M. Bennis
Vaneet Aggarwal
24
67
0
23 Oct 2019
Sparsification as a Remedy for Staleness in Distributed Asynchronous SGD
Rosa Candela
Giulio Franzese
Maurizio Filippone
Pietro Michiardi
18
1
0
21 Oct 2019
A Double Residual Compression Algorithm for Efficient Distributed Learning
Xiaorui Liu
Yao Li
Jiliang Tang
Ming Yan
24
49
0
16 Oct 2019
Election Coding for Distributed Learning: Protecting SignSGD against Byzantine Attacks
Jy-yong Sohn
Dong-Jun Han
Beongjun Choi
Jaekyun Moon
FedML
21
36
0
14 Oct 2019
JSDoop and TensorFlow.js: Volunteer Distributed Web Browser-Based Neural Network Training
José Á. Morell
Andrés Camero
Enrique Alba
29
9
0
12 Oct 2019
Straggler-Agnostic and Communication-Efficient Distributed Primal-Dual Algorithm for High-Dimensional Data Mining
Zhouyuan Huo
Heng-Chiao Huang
FedML
19
5
0
09 Oct 2019
Distributed Learning of Deep Neural Networks using Independent Subnet Training
John Shelton Hyatt
Cameron R. Wolfe
Michael Lee
Yuxin Tang
Anastasios Kyrillidis
Christopher M. Jermaine
OOD
29
35
0
04 Oct 2019
SlowMo: Improving Communication-Efficient Distributed SGD with Slow Momentum
Jianyu Wang
Vinayak Tantia
Nicolas Ballas
Michael G. Rabbat
17
200
0
01 Oct 2019
Gap Aware Mitigation of Gradient Staleness
Saar Barkai
Ido Hakimi
Assaf Schuster
17
23
0
24 Sep 2019
Communication-Efficient Distributed Learning via Lazily Aggregated Quantized Gradients
Jun Sun
Tianyi Chen
G. Giannakis
Zaiyue Yang
30
93
0
17 Sep 2019
The Error-Feedback Framework: Better Rates for SGD with Delayed Gradients and Compressed Communication
Sebastian U. Stich
Sai Praneeth Karimireddy
FedML
25
20
0
11 Sep 2019
Gradient Descent with Compressed Iterates
Ahmed Khaled
Peter Richtárik
21
22
0
10 Sep 2019
Beyond Human-Level Accuracy: Computational Challenges in Deep Learning
Joel Hestness
Newsha Ardalani
G. Diamos
21
66
0
03 Sep 2019
An End-to-End Encrypted Neural Network for Gradient Updates Transmission in Federated Learning
Hongyu Li
Tianqi Han
FedML
27
32
0
22 Aug 2019
RATQ: A Universal Fixed-Length Quantizer for Stochastic Optimization
Prathamesh Mayekar
Himanshu Tyagi
MQ
35
48
0
22 Aug 2019
Accelerated CNN Training Through Gradient Approximation
Ziheng Wang
Sree Harsha Nelaturu
176
5
0
15 Aug 2019
Accelerating CNN Training by Pruning Activation Gradients
Xucheng Ye
Pengcheng Dai
Junyu Luo
Xin Guo
Weisheng Zhao
Jianlei Yang
Yiran Chen
11
2
0
01 Aug 2019
Taming Momentum in a Distributed Asynchronous Environment
Ido Hakimi
Saar Barkai
Moshe Gabel
Assaf Schuster
19
23
0
26 Jul 2019
Federated Learning over Wireless Fading Channels
M. Amiri
Deniz Gunduz
33
508
0
23 Jul 2019
Decentralized Deep Learning with Arbitrary Communication Compression
Anastasia Koloskova
Tao R. Lin
Sebastian U. Stich
Martin Jaggi
FedML
28
233
0
22 Jul 2019
signADAM: Learning Confidences for Deep Neural Networks
Dong Wang
Yicheng Liu
Wenwo Tang
Fanhua Shang
Hongying Liu
Qigong Sun
Licheng Jiao
ODL
FedML
16
1
0
21 Jul 2019
DeepSqueeze
\texttt{DeepSqueeze}
DeepSqueeze
: Decentralization Meets Error-Compensated Compression
Hanlin Tang
Xiangru Lian
Shuang Qiu
Lei Yuan
Ce Zhang
Tong Zhang
Liu
14
49
0
17 Jul 2019
QUOTIENT: Two-Party Secure Neural Network Training and Prediction
Nitin Agrawal
Ali Shahin Shamsabadi
Matt J. Kusner
Adria Gascon
30
212
0
08 Jul 2019
Faster Distributed Deep Net Training: Computation and Communication Decoupled Stochastic Gradient Descent
Shuheng Shen
Linli Xu
Jingchang Liu
Xianfeng Liang
Yifei Cheng
ODL
FedML
29
24
0
28 Jun 2019
Database Meets Deep Learning: Challenges and Opportunities
Wei Wang
Meihui Zhang
Gang Chen
H. V. Jagadish
Beng Chin Ooi
K. Tan
21
147
0
21 Jun 2019
Qsparse-local-SGD: Distributed SGD with Quantization, Sparsification, and Local Computations
Debraj Basu
Deepesh Data
C. Karakuş
Suhas Diggavi
MQ
24
402
0
06 Jun 2019
Distributed Training with Heterogeneous Data: Bridging Median- and Mean-Based Algorithms
Xiangyi Chen
Tiancong Chen
Haoran Sun
Zhiwei Steven Wu
Mingyi Hong
FedML
24
73
0
04 Jun 2019
PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization
Thijs Vogels
Sai Praneeth Karimireddy
Martin Jaggi
19
317
0
31 May 2019
Global Momentum Compression for Sparse Communication in Distributed Learning
Chang-Wei Shi
Shen-Yi Zhao
Yin-Peng Xie
Hao Gao
Wu-Jun Li
35
1
0
30 May 2019
Convergence of Distributed Stochastic Variance Reduced Methods without Sampling Extra Data
Shicong Cen
Huishuai Zhang
Yuejie Chi
Wei-neng Chen
Tie-Yan Liu
FedML
16
27
0
29 May 2019
Accelerated Sparsified SGD with Error Feedback
Tomoya Murata
Taiji Suzuki
22
2
0
29 May 2019
A Unified Theory of SGD: Variance Reduction, Sampling, Quantization and Coordinate Descent
Eduard A. Gorbunov
Filip Hanzely
Peter Richtárik
25
143
0
27 May 2019
Natural Compression for Distributed Deep Learning
Samuel Horváth
Chen-Yu Ho
L. Horvath
Atal Narayan Sahu
Marco Canini
Peter Richtárik
21
151
0
27 May 2019
Communication-Efficient Distributed Blockwise Momentum SGD with Error-Feedback
Shuai Zheng
Ziyue Huang
James T. Kwok
16
114
0
27 May 2019
Decentralized Learning of Generative Adversarial Networks from Non-iid Data
Ryo Yonetani
Tomohiro Takahashi
Atsushi Hashimoto
Yoshitaka Ushiku
45
24
0
23 May 2019
MATCHA: Speeding Up Decentralized SGD via Matching Decomposition Sampling
Jianyu Wang
Anit Kumar Sahu
Zhouyi Yang
Gauri Joshi
S. Kar
29
159
0
23 May 2019
DoubleSqueeze: Parallel Stochastic Gradient Descent with Double-Pass Error-Compensated Compression
Hanlin Tang
Xiangru Lian
Chen Yu
Tong Zhang
Ji Liu
11
217
0
15 May 2019
Priority-based Parameter Propagation for Distributed DNN Training
Anand Jayarajan
Jinliang Wei
Garth A. Gibson
Alexandra Fedorova
Gennady Pekhimenko
AI4CE
22
178
0
10 May 2019
On the Linear Speedup Analysis of Communication Efficient Momentum SGD for Distributed Non-Convex Optimization
Hao Yu
Rong Jin
Sen Yang
FedML
49
380
0
09 May 2019
Communication trade-offs for synchronized distributed SGD with large step size
Kumar Kshitij Patel
Aymeric Dieuleveut
FedML
30
27
0
25 Apr 2019
Distributed Deep Learning Strategies For Automatic Speech Recognition
Wei Zhang
Xiaodong Cui
Ulrich Finkler
Brian Kingsbury
G. Saon
David S. Kung
M. Picheny
21
29
0
10 Apr 2019
Nested Dithered Quantization for Communication Reduction in Distributed Training
Afshin Abdi
Faramarz Fekri
MQ
6
16
0
02 Apr 2019
Scalable Deep Learning on Distributed Infrastructures: Challenges, Techniques and Tools
R. Mayer
Hans-Arno Jacobsen
GNN
29
186
0
27 Mar 2019
Communication-efficient distributed SGD with Sketching
Nikita Ivkin
D. Rothchild
Enayat Ullah
Vladimir Braverman
Ion Stoica
R. Arora
FedML
22
198
0
12 Mar 2019
Robust and Communication-Efficient Federated Learning from Non-IID Data
Felix Sattler
Simon Wiedemann
K. Müller
Wojciech Samek
FedML
24
1,337
0
07 Mar 2019
Speeding up Deep Learning with Transient Servers
Shijian Li
R. Walls
Lijie Xu
Tian Guo
30
12
0
28 Feb 2019
On Maintaining Linear Convergence of Distributed Learning and Optimization under Limited Communication
Sindri Magnússon
H. S. Ghadikolaei
Na Li
27
81
0
26 Feb 2019
Quantized Frank-Wolfe: Faster Optimization, Lower Communication, and Projection Free
Mingrui Zhang
Lin Chen
Aryan Mokhtari
Hamed Hassani
Amin Karbasi
16
8
0
17 Feb 2019
Previous
1
2
3
...
10
7
8
9
Next