Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.07878
Cited By
TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning
22 May 2017
W. Wen
Cong Xu
Feng Yan
Chunpeng Wu
Yandan Wang
Yiran Chen
Hai Helen Li
Re-assign community
ArXiv
PDF
HTML
Papers citing
"TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning"
50 / 467 papers shown
Title
Adaptive Top-K in SGD for Communication-Efficient Distributed Learning
Mengzhe Ruan
Guangfeng Yan
Yuanzhang Xiao
Linqi Song
Weitao Xu
40
3
0
24 Oct 2022
Provably Doubly Accelerated Federated Learning: The First Theoretically Successful Combination of Local Training and Communication Compression
Laurent Condat
Ivan Agarský
Peter Richtárik
FedML
40
17
0
24 Oct 2022
ScionFL: Efficient and Robust Secure Quantized Aggregation
Y. Ben-Itzhak
Helen Mollering
Benny Pinkas
T. Schneider
Ajith Suresh
Oleksandr Tkachenko
S. Vargaftik
Christian Weinert
Hossein Yalame
Avishay Yanai
43
6
0
13 Oct 2022
Sparse Random Networks for Communication-Efficient Federated Learning
Berivan Isik
Francesco Pase
Deniz Gunduz
Tsachy Weissman
M. Zorzi
FedML
70
52
0
30 Sep 2022
Personalized Federated Learning with Communication Compression
El Houcine Bergou
Konstantin Burlachenko
Aritra Dutta
Peter Richtárik
FedML
80
9
0
12 Sep 2022
SYNTHESIS: A Semi-Asynchronous Path-Integrated Stochastic Gradient Method for Distributed Learning in Computing Clusters
Zhuqing Liu
Xin Zhang
Jia-Wei Liu
38
1
0
17 Aug 2022
A Fast Blockchain-based Federated Learning Framework with Compressed Communications
Laizhong Cui
Xiaoxin Su
Yipeng Zhou
FedML
22
23
0
12 Aug 2022
Quantized Adaptive Subgradient Algorithms and Their Applications
Ke Xu
Jianqiao Wangni
Yifan Zhang
Deheng Ye
Jiaxiang Wu
P. Zhao
36
0
0
11 Aug 2022
Quantization enabled Privacy Protection in Decentralized Stochastic Optimization
Yongqiang Wang
Tamer Basar
32
44
0
07 Aug 2022
BiFeat: Supercharge GNN Training via Graph Feature Quantization
Yuxin Ma
Ping Gong
Jun Yi
Z. Yao
Cheng-rong Li
Yuxiong He
Feng Yan
GNN
21
6
0
29 Jul 2022
Reconciling Security and Communication Efficiency in Federated Learning
Karthik Prasad
Sayan Ghosh
Graham Cormode
Ilya Mironov
Ashkan Yousefpour
Pierre Stock
FedML
38
8
0
26 Jul 2022
Quantized Training of Gradient Boosting Decision Trees
Yu Shi
Guolin Ke
Zhuoming Chen
Shuxin Zheng
Tie-Yan Liu
MQ
AI4CE
21
18
0
20 Jul 2022
MUD-PQFed: Towards Malicious User Detection in Privacy-Preserving Quantized Federated Learning
Hua Ma
Qun Li
Yifeng Zheng
Zhi Zhang
Xiaoning Liu
Yan Gao
S. Al-Sarawi
Derek Abbott
FedML
42
3
0
19 Jul 2022
Fundamental Limits of Communication Efficiency for Model Aggregation in Distributed Learning: A Rate-Distortion Approach
Naifu Zhang
M. Tao
Jia Wang
Fan Xu
19
13
0
28 Jun 2022
Efficient Adaptive Federated Optimization of Federated Learning for IoT
Zunming Chen
Hongyan Cui
Ensen Wu
Yu Xi
29
0
0
23 Jun 2022
sqSGD: Locally Private and Communication Efficient Federated Learning
Yan Feng
Tao Xiong
Ruofan Wu
Lingjuan Lv
Leilei Shi
FedML
31
2
0
21 Jun 2022
Shifted Compression Framework: Generalizations and Improvements
Egor Shulgin
Peter Richtárik
20
6
0
21 Jun 2022
Compressed-VFL: Communication-Efficient Learning with Vertically Partitioned Data
Timothy Castiglia
Anirban Das
Shiqiang Wang
S. Patterson
FedML
27
48
0
16 Jun 2022
Communication-Efficient Robust Federated Learning with Noisy Labels
Junyi Li
Jian Pei
Heng Huang
FedML
34
18
0
11 Jun 2022
Lower Bounds and Nearly Optimal Algorithms in Distributed Learning with Communication Compression
Xinmeng Huang
Yiming Chen
W. Yin
Kun Yuan
40
25
0
08 Jun 2022
Distributed Newton-Type Methods with Communication Compression and Bernoulli Aggregation
Rustem Islamov
Xun Qian
Slavomír Hanzely
M. Safaryan
Peter Richtárik
42
16
0
07 Jun 2022
Fine-tuning Language Models over Slow Networks using Activation Compression with Guarantees
Jue Wang
Binhang Yuan
Luka Rimanic
Yongjun He
Tri Dao
Beidi Chen
Christopher Ré
Ce Zhang
AI4CE
31
11
0
02 Jun 2022
Variance Reduction is an Antidote to Byzantines: Better Rates, Weaker Assumptions and Communication Compression as a Cherry on the Top
Eduard A. Gorbunov
Samuel Horváth
Peter Richtárik
Gauthier Gidel
AAML
21
0
0
01 Jun 2022
DisPFL: Towards Communication-Efficient Personalized Federated Learning via Decentralized Sparse Training
Rong Dai
Li Shen
Fengxiang He
Xinmei Tian
Dacheng Tao
FedML
27
112
0
01 Jun 2022
Efficient-Adam: Communication-Efficient Distributed Adam
Congliang Chen
Li Shen
Wei Liu
Zhi-Quan Luo
34
19
0
28 May 2022
ByteComp: Revisiting Gradient Compression in Distributed Training
Zhuang Wang
Yanghua Peng
Yibo Zhu
T. Ng
20
2
0
28 May 2022
QUIC-FL: Quick Unbiased Compression for Federated Learning
Ran Ben-Basat
S. Vargaftik
Amit Portnoy
Gil Einziger
Y. Ben-Itzhak
Michael Mitzenmacher
FedML
72
13
0
26 May 2022
On Distributed Adaptive Optimization with Gradient Compression
Xiaoyun Li
Belhal Karimi
Ping Li
23
25
0
11 May 2022
EF-BV: A Unified Theory of Error Feedback and Variance Reduction Mechanisms for Biased and Unbiased Compression in Distributed Optimization
Laurent Condat
Kai Yi
Peter Richtárik
43
21
0
09 May 2022
FedShuffle: Recipes for Better Use of Local Work in Federated Learning
Samuel Horváth
Maziar Sanjabi
Lin Xiao
Peter Richtárik
Michael G. Rabbat
FedML
35
21
0
27 Apr 2022
Enable Deep Learning on Mobile Devices: Methods, Systems, and Applications
Han Cai
Ji Lin
Chengyue Wu
Zhijian Liu
Haotian Tang
Hanrui Wang
Ligeng Zhu
Song Han
29
108
0
25 Apr 2022
Sign Bit is Enough: A Learning Synchronization Framework for Multi-hop All-reduce with Ultimate Compression
Feijie Wu
Shiqi He
Song Guo
Zhihao Qu
Yining Qi
W. Zhuang
Jie Zhang
24
9
0
14 Apr 2022
FedSynth: Gradient Compression via Synthetic Data in Federated Learning
Shengyuan Hu
Jack Goetz
Kshitiz Malik
Hongyuan Zhan
Zhe Liu
Yue Liu
DD
FedML
45
38
0
04 Apr 2022
Scaling Language Model Size in Cross-Device Federated Learning
Jae Hun Ro
Theresa Breiner
Lara McConnaughey
Mingqing Chen
A. Suresh
Shankar Kumar
Rajiv Mathews
FedML
34
24
0
31 Mar 2022
PipeGCN: Efficient Full-Graph Training of Graph Convolutional Networks with Pipelined Feature Communication
Cheng Wan
Youjie Li
Cameron R. Wolfe
Anastasios Kyrillidis
Namjae Kim
Yingyan Lin
GNN
36
67
0
20 Mar 2022
Approximability and Generalisation
A. J. Turner
Ata Kabán
33
0
0
15 Mar 2022
LDP: Learnable Dynamic Precision for Efficient Deep Neural Network Training and Inference
Zhongzhi Yu
Y. Fu
Shang Wu
Mengquan Li
Haoran You
Yingyan Lin
28
1
0
15 Mar 2022
DNN Training Acceleration via Exploring GPGPU Friendly Sparsity
Zhuoran Song
Yihong Xu
Han Li
Naifeng Jing
Xiaoyao Liang
Li Jiang
36
3
0
11 Mar 2022
Correlated quantization for distributed mean estimation and optimization
A. Suresh
Ziteng Sun
Jae Hun Ro
Felix X. Yu
36
12
0
09 Mar 2022
Linear Stochastic Bandits over a Bit-Constrained Channel
A. Mitra
Hamed Hassani
George J. Pappas
47
8
0
02 Mar 2022
Bitwidth Heterogeneous Federated Learning with Progressive Weight Dequantization
Jaehong Yoon
Geondo Park
Wonyong Jeong
Sung Ju Hwang
FedML
32
19
0
23 Feb 2022
Trusted AI in Multi-agent Systems: An Overview of Privacy and Security for Distributed Learning
Chuan Ma
Jun Li
Kang Wei
Bo Liu
Ming Ding
Long Yuan
Zhu Han
H. Vincent Poor
64
43
0
18 Feb 2022
Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient Methods
Aleksandr Beznosikov
Eduard A. Gorbunov
Hugo Berard
Nicolas Loizou
24
49
0
15 Feb 2022
Maximizing Communication Efficiency for Large-scale Training via 0/1 Adam
Yucheng Lu
Conglong Li
Minjia Zhang
Christopher De Sa
Yuxiong He
OffRL
AI4CE
29
20
0
12 Feb 2022
FL_PyTorch: optimization research simulator for federated learning
Konstantin Burlachenko
Samuel Horváth
Peter Richtárik
FedML
53
18
0
07 Feb 2022
Lossy Gradient Compression: How Much Accuracy Can One Bit Buy?
Sadaf Salehkalaibar
Stefano Rini
FedML
35
4
0
06 Feb 2022
DoCoM: Compressed Decentralized Optimization with Near-Optimal Sample Complexity
Chung-Yiu Yau
Hoi-To Wai
93
6
0
01 Feb 2022
Near-Optimal Sparse Allreduce for Distributed Deep Learning
Shigang Li
Torsten Hoefler
31
51
0
19 Jan 2022
Egeria: Efficient DNN Training with Knowledge-Guided Layer Freezing
Yiding Wang
D. Sun
Kai Chen
Fan Lai
Mosharaf Chowdhury
35
44
0
17 Jan 2022
Optimizing the Communication-Accuracy Trade-off in Federated Learning with Rate-Distortion Theory
Nicole Mitchell
Johannes Ballé
Zachary B. Charles
Jakub Konecný
FedML
19
21
0
07 Jan 2022
Previous
1
2
3
4
5
6
...
8
9
10
Next