ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.04977
  4. Cited By
What Uncertainties Do We Need in Bayesian Deep Learning for Computer
  Vision?

What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?

15 March 2017
Alex Kendall
Y. Gal
    BDL
    OOD
    UD
    UQCV
    PER
ArXivPDFHTML

Papers citing "What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?"

50 / 2,214 papers shown
Title
Angular Visual Hardness
Angular Visual Hardness
Beidi Chen
Weiyang Liu
Zhiding Yu
Jan Kautz
Anshumali Shrivastava
Animesh Garg
Anima Anandkumar
AAML
43
51
0
04 Dec 2019
Regression with Uncertainty Quantification in Large Scale Complex Data
Regression with Uncertainty Quantification in Large Scale Complex Data
Nicholas Wilkins
Michael Johnson
Ifeoma Nwogu
UQCV
BDL
21
0
0
04 Dec 2019
Bayesian-Deep-Learning Estimation of Earthquake Location from
  Single-Station Observations
Bayesian-Deep-Learning Estimation of Earthquake Location from Single-Station Observations
S. Mousavi
G. Beroza
BDL
9
102
0
03 Dec 2019
Deep Bayesian Active Learning for Multiple Correct Outputs
Deep Bayesian Active Learning for Multiple Correct Outputs
Khaled Jedoui
Ranjay Krishna
Michael S. Bernstein
Li Fei-Fei
BDL
OOD
UQCV
29
14
0
02 Dec 2019
View-Invariant Probabilistic Embedding for Human Pose
View-Invariant Probabilistic Embedding for Human Pose
Jennifer J. Sun
Jiaping Zhao
Liang-Chieh Chen
Florian Schroff
Hartwig Adam
Ting Liu
27
77
0
02 Dec 2019
Image segmentation of liver stage malaria infection with spatial
  uncertainty sampling
Image segmentation of liver stage malaria infection with spatial uncertainty sampling
A. Soleimany
Harini Suresh
Jose Javier Gonzalez Ortiz
Divya Shanmugam
N. Gural
John Guttag
S. Bhatia
14
4
0
30 Nov 2019
Point Cloud Instance Segmentation using Probabilistic Embeddings
Point Cloud Instance Segmentation using Probabilistic Embeddings
Biao Zhang
Peter Wonka
3DPC
25
66
0
30 Nov 2019
Confidence Calibration and Predictive Uncertainty Estimation for Deep
  Medical Image Segmentation
Confidence Calibration and Predictive Uncertainty Estimation for Deep Medical Image Segmentation
Alireza Mehrtash
W. Wells
C. Tempany
Purang Abolmaesumi
Tina Kapur
OOD
FedML
UQCV
24
265
0
29 Nov 2019
Using Depth for Pixel-Wise Detection of Adversarial Attacks in Crowd
  Counting
Using Depth for Pixel-Wise Detection of Adversarial Attacks in Crowd Counting
Weizhe Liu
Mathieu Salzmann
Pascal Fua
AAML
27
9
0
26 Nov 2019
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from
  Images in the Wild
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild
Shangzhe Wu
Christian Rupprecht
Andrea Vedaldi
OCL
38
310
0
25 Nov 2019
ART: A machine learning Automated Recommendation Tool for synthetic
  biology
ART: A machine learning Automated Recommendation Tool for synthetic biology
Tijana Radivojević
Zak Costello
Kenneth Workman
Hector Garcia Martin
11
9
0
25 Nov 2019
Measuring Uncertainty through Bayesian Learning of Deep Neural Network
  Structure
Measuring Uncertainty through Bayesian Learning of Deep Neural Network Structure
Zhijie Deng
Yucen Luo
Jun Zhu
Bo Zhang
UQCV
BDL
19
2
0
22 Nov 2019
Robust Conditional GAN from Uncertainty-Aware Pairwise Comparisons
Robust Conditional GAN from Uncertainty-Aware Pairwise Comparisons
Ligong Han
Ruijiang Gao
Mun Kim
Xin Tao
Bo Liu
Dimitris N. Metaxas
27
14
0
21 Nov 2019
Analysis of Deep Networks for Monocular Depth Estimation Through
  Adversarial Attacks with Proposal of a Defense Method
Analysis of Deep Networks for Monocular Depth Estimation Through Adversarial Attacks with Proposal of a Defense Method
Junjie Hu
Takayuki Okatani
AAML
MDE
43
15
0
20 Nov 2019
Parameters Estimation for the Cosmic Microwave Background with Bayesian
  Neural Networks
Parameters Estimation for the Cosmic Microwave Background with Bayesian Neural Networks
Héctor J. Hortúa
Riccardo Volpi
D. Marinelli
Luigi Malagò
BDL
27
23
0
19 Nov 2019
Multi-Task Learning of Height and Semantics from Aerial Images
Multi-Task Learning of Height and Semantics from Aerial Images
Marcela Carvalho
Bertrand Le Saux
Pauline Trouvé-Peloux
F. Champagnat
Andrés Almansa
27
47
0
18 Nov 2019
Signed Input Regularization
Signed Input Regularization
Saeid Asgari Taghanaki
Kumar Abhishek
Ghassan Hamarneh
AAML
26
1
0
16 Nov 2019
A Comparative Study between Bayesian and Frequentist Neural Networks for Remaining Useful Life Estimation in Condition-Based Maintenance
Luca Della Libera
BDL
UQCV
15
1
0
14 Nov 2019
What Do Compressed Deep Neural Networks Forget?
What Do Compressed Deep Neural Networks Forget?
Sara Hooker
Aaron Courville
Gregory Clark
Yann N. Dauphin
Andrea Frome
19
182
0
13 Nov 2019
AMPL: A Data-Driven Modeling Pipeline for Drug Discovery
AMPL: A Data-Driven Modeling Pipeline for Drug Discovery
Amanda J. Minnich
K. McLoughlin
Margaret J. Tse
Jason Deng
Andrew Weber
...
Bharath Ramsundar
T. Rush
Stacie Calad-Thomson
J. Brase
Jonathan E. Allen
24
68
0
13 Nov 2019
Uninformed Students: Student-Teacher Anomaly Detection with
  Discriminative Latent Embeddings
Uninformed Students: Student-Teacher Anomaly Detection with Discriminative Latent Embeddings
Paul Bergmann
Michael Fauser
David Sattlegger
C. Steger
37
657
0
06 Nov 2019
UNO: Uncertainty-aware Noisy-Or Multimodal Fusion for Unanticipated
  Input Degradation
UNO: Uncertainty-aware Noisy-Or Multimodal Fusion for Unanticipated Input Degradation
Junjiao Tian
W. Cheung
Nathan Glaser
Yen-Cheng Liu
Z. Kira
27
26
0
06 Nov 2019
Out of distribution detection for intra-operative functional imaging
Out of distribution detection for intra-operative functional imaging
T. Adler
Leonardo Ayala
Lynton Ardizzone
H. Kenngott
A. Vemuri
Beat P. Müller-Stich
Carsten Rother
Ullrich Kothe
Lena Maier-Hein
OOD
23
5
0
05 Nov 2019
Probabilistic Super-Resolution of Solar Magnetograms: Generating Many
  Explanations and Measuring Uncertainties
Probabilistic Super-Resolution of Solar Magnetograms: Generating Many Explanations and Measuring Uncertainties
Xavier Gitiaux
S. Maloney
A. Jungbluth
Carl Shneider
P. Wright
A. G. Baydin
Michel Deudon
Y. Gal
Freddie Kalaitzis
A. Muñoz-Jaramillo
13
0
0
04 Nov 2019
Technical Report: Co-learning of geometry and semantics for online 3D
  mapping
Technical Report: Co-learning of geometry and semantics for online 3D mapping
Marcela Carvalho
Maxime Ferrera
Alexandre Boulch
Julien Moras
Bertrand Le Saux
Pauline Trouvé-Peloux
3DV
3DPC
22
6
0
04 Nov 2019
Generalized Learning with Rejection for Classification and Regression
  Problems
Generalized Learning with Rejection for Classification and Regression Problems
Amina Asif
F. Minhas
10
3
0
03 Nov 2019
On Modelling Label Uncertainty in Deep Neural Networks: Automatic
  Estimation of Intra-observer Variability in 2D Echocardiography Quality
  Assessment
On Modelling Label Uncertainty in Deep Neural Networks: Automatic Estimation of Intra-observer Variability in 2D Echocardiography Quality Assessment
Zhibin Liao
H. Girgis
A. Abdi
H. Vaseli
J. Hetherington
R. Rohling
K. Gin
T. Tsang
Purang Abolmaesumi
UQCV
OOD
19
40
0
02 Nov 2019
Mitigating the Effects of Non-Identifiability on Inference for Bayesian
  Neural Networks with Latent Variables
Mitigating the Effects of Non-Identifiability on Inference for Bayesian Neural Networks with Latent Variables
Yaniv Yacoby
Weiwei Pan
Finale Doshi-Velez
BDL
UQCV
11
1
0
01 Nov 2019
Multivariate Uncertainty in Deep Learning
Multivariate Uncertainty in Deep Learning
Rebecca L. Russell
Christopher P. Reale
BDL
UQCV
25
68
0
31 Oct 2019
Heteroscedastic Calibration of Uncertainty Estimators in Deep Learning
Heteroscedastic Calibration of Uncertainty Estimators in Deep Learning
Bindya Venkatesh
Jayaraman J. Thiagarajan
UQCV
15
6
0
30 Oct 2019
Learn-By-Calibrating: Using Calibration as a Training Objective
Learn-By-Calibrating: Using Calibration as a Training Objective
Jayaraman J. Thiagarajan
Bindya Venkatesh
Deepta Rajan
UQCV
17
6
0
30 Oct 2019
A framework for deep learning emulation of numerical models with a case
  study in satellite remote sensing
A framework for deep learning emulation of numerical models with a case study in satellite remote sensing
Kate Duffy
T. Vandal
Weile Wang
R. Nemani
A. Ganguly
16
8
0
29 Oct 2019
Towards calibrated and scalable uncertainty representations for neural
  networks
Towards calibrated and scalable uncertainty representations for neural networks
Nabeel Seedat
Christopher Kanan
UQCV
42
19
0
28 Oct 2019
Pushing the Frontiers of Unconstrained Crowd Counting: New Dataset and
  Benchmark Method
Pushing the Frontiers of Unconstrained Crowd Counting: New Dataset and Benchmark Method
Vishwanath A. Sindagi
R. Yasarla
Vishal M. Patel
23
87
0
28 Oct 2019
Modelling heterogeneous distributions with an Uncountable Mixture of
  Asymmetric Laplacians
Modelling heterogeneous distributions with an Uncountable Mixture of Asymmetric Laplacians
Axel Brando
Jose A. Rodríguez-Serrano
Jordi Vitrià
Alberto Rubio
14
21
0
27 Oct 2019
DR$\vert$GRADUATE: uncertainty-aware deep learning-based diabetic
  retinopathy grading in eye fundus images
DR∣\vert∣GRADUATE: uncertainty-aware deep learning-based diabetic retinopathy grading in eye fundus images
Teresa Araújo
Guilherme Aresta
Luís Mendonça
S. Penas
Carolina Maia
Â. Carneiro
A. Mendonça
A. Campilho
MedIm
16
109
0
25 Oct 2019
Learning an Uncertainty-Aware Object Detector for Autonomous Driving
Learning an Uncertainty-Aware Object Detector for Autonomous Driving
Gregory P. Meyer
Niranjan Thakurdesai
UQCV
29
60
0
24 Oct 2019
Accurate Layerwise Interpretable Competence Estimation
Accurate Layerwise Interpretable Competence Estimation
Vickram Rajendran
Will LeVine
33
10
0
24 Oct 2019
Learning Resilient Behaviors for Navigation Under Uncertainty
Learning Resilient Behaviors for Navigation Under Uncertainty
Tingxiang Fan
Pinxin Long
Wenxi Liu
Jia Pan
Ruigang Yang
Tianyi Zhou
21
18
0
22 Oct 2019
Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction
  to Concepts and Methods
Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods
Eyke Hüllermeier
Willem Waegeman
PER
UD
89
1,366
0
21 Oct 2019
Uncertainty-aware Sensitivity Analysis Using Rényi Divergences
Uncertainty-aware Sensitivity Analysis Using Rényi Divergences
Topi Paananen
Michael Riis Andersen
Aki Vehtari
33
3
0
17 Oct 2019
Achieving Robustness to Aleatoric Uncertainty with Heteroscedastic
  Bayesian Optimisation
Achieving Robustness to Aleatoric Uncertainty with Heteroscedastic Bayesian Optimisation
Ryan-Rhys Griffiths
Alexander A. Aldrick
Miguel García-Ortegón
Vidhi R. Lalchand
A. Lee
38
35
0
17 Oct 2019
Quantifying Classification Uncertainty using Regularized Evidential
  Neural Networks
Quantifying Classification Uncertainty using Regularized Evidential Neural Networks
Xujiang Zhao
Yuzhe Ou
Lance M. Kaplan
Feng Chen
Jin-Hee Cho
EDL
BDL
UQCV
26
16
0
15 Oct 2019
MultiPath: Multiple Probabilistic Anchor Trajectory Hypotheses for
  Behavior Prediction
MultiPath: Multiple Probabilistic Anchor Trajectory Hypotheses for Behavior Prediction
Yuning Chai
Benjamin Sapp
Mayank Bansal
Dragomir Anguelov
46
654
0
12 Oct 2019
Dual Neural Network Architecture for Determining Epistemic and Aleatoric
  Uncertainties
Dual Neural Network Architecture for Determining Epistemic and Aleatoric Uncertainties
Augustin Prado
Ravinath Kausik
Lalitha Venkataramanan
8
4
0
10 Oct 2019
Continual Learning Using Bayesian Neural Networks
Continual Learning Using Bayesian Neural Networks
Honglin Li
Payam Barnaghi
Shirin Enshaeifar
F. Ganz
BDL
19
38
0
09 Oct 2019
NGBoost: Natural Gradient Boosting for Probabilistic Prediction
NGBoost: Natural Gradient Boosting for Probabilistic Prediction
Tony Duan
Anand Avati
D. Ding
Khanh K. Thai
S. Basu
A. Ng
Alejandro Schuler
BDL
14
296
0
08 Oct 2019
Evaluating Scalable Uncertainty Estimation Methods for DNN-Based
  Molecular Property Prediction
Evaluating Scalable Uncertainty Estimation Methods for DNN-Based Molecular Property Prediction
Gabriele Scalia
Colin A. Grambow
Barbara Pernici
Yi‐Pei Li
W. Green
BDL
33
8
0
07 Oct 2019
Organization of machine learning based product development as per ISO
  26262 and ISO/PAS 21448
Organization of machine learning based product development as per ISO 26262 and ISO/PAS 21448
Krystian Radlak
Michal Szczepankiewicz
Tim Jones
Piotr Serwa
25
1
0
07 Oct 2019
Deep Evidential Regression
Deep Evidential Regression
Alexander Amini
Wilko Schwarting
A. Soleimany
Daniela Rus
EDL
PER
BDL
UD
UQCV
30
418
0
07 Oct 2019
Previous
123...373839...434445
Next