ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.04977
  4. Cited By
What Uncertainties Do We Need in Bayesian Deep Learning for Computer
  Vision?

What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?

15 March 2017
Alex Kendall
Y. Gal
    BDL
    OOD
    UD
    UQCV
    PER
ArXivPDFHTML

Papers citing "What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?"

50 / 2,214 papers shown
Title
Dropout Distillation for Efficiently Estimating Model Confidence
Dropout Distillation for Efficiently Estimating Model Confidence
Corina Gurau
Alex Bewley
Ingmar Posner
BDL
UQCV
11
19
0
27 Sep 2018
Diagnostics in Semantic Segmentation
Diagnostics in Semantic Segmentation
Vladimir Nekrasov
Chunhua Shen
Ian Reid
VLM
SSeg
17
3
0
27 Sep 2018
Left Ventricle Segmentation and Quantification from Cardiac Cine MR
  Images via Multi-task Learning
Left Ventricle Segmentation and Quantification from Cardiac Cine MR Images via Multi-task Learning
Shusil Dangi
Z. Yaniv
Cristian A. Linte
41
24
0
26 Sep 2018
Confidence Inference for Focused Learning in Stereo Matching
Confidence Inference for Focused Learning in Stereo Matching
Ruichao Xiao
Wenxiu Sun
Chengxi Yang
BDL
3DV
8
2
0
25 Sep 2018
Bounding Box Regression with Uncertainty for Accurate Object Detection
Bounding Box Regression with Uncertainty for Accurate Object Detection
Yihui He
Chenchen Zhu
Jianren Wang
Marios Savvides
Xinming Zhang
ObjD
46
466
0
23 Sep 2018
Quantifying total uncertainty in physics-informed neural networks for
  solving forward and inverse stochastic problems
Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems
Dongkun Zhang
Lu Lu
Ling Guo
George Karniadakis
UQCV
27
399
0
21 Sep 2018
Evaluating Merging Strategies for Sampling-based Uncertainty Techniques
  in Object Detection
Evaluating Merging Strategies for Sampling-based Uncertainty Techniques in Object Detection
Dimity Miller
Feras Dayoub
Michael Milford
Niko Sünderhauf
23
105
0
17 Sep 2018
Leveraging Heteroscedastic Aleatoric Uncertainties for Robust Real-Time
  LiDAR 3D Object Detection
Leveraging Heteroscedastic Aleatoric Uncertainties for Robust Real-Time LiDAR 3D Object Detection
Di Feng
Lars Rosenbaum
Fabian Timm
Klaus C. J. Dietmayer
3DPC
24
69
0
14 Sep 2018
Deep Network Uncertainty Maps for Indoor Navigation
Deep Network Uncertainty Maps for Indoor Navigation
Francesco Verdoja
Jens Lundell
Ville Kyrki
UQCV
6
17
0
13 Sep 2018
Real-Time Joint Semantic Segmentation and Depth Estimation Using
  Asymmetric Annotations
Real-Time Joint Semantic Segmentation and Depth Estimation Using Asymmetric Annotations
Vladimir Nekrasov
Thanuja Dharmasiri
Andrew Spek
Tom Drummond
Chunhua Shen
Ian Reid
31
148
0
13 Sep 2018
A Less Biased Evaluation of Out-of-distribution Sample Detectors
A Less Biased Evaluation of Out-of-distribution Sample Detectors
Alireza Shafaei
Mark Schmidt
James J. Little
OODD
32
58
0
13 Sep 2018
Joint Segmentation and Uncertainty Visualization of Retinal Layers in
  Optical Coherence Tomography Images using Bayesian Deep Learning
Joint Segmentation and Uncertainty Visualization of Retinal Layers in Optical Coherence Tomography Images using Bayesian Deep Learning
S. Sedai
B. Antony
Dwarikanath Mahapatra
R. Garnavi
UQCV
23
61
0
12 Sep 2018
Deep Depth from Defocus: how can defocus blur improve 3D estimation
  using dense neural networks?
Deep Depth from Defocus: how can defocus blur improve 3D estimation using dense neural networks?
Marcela Carvalho
Bertrand Le Saux
Pauline Trouvé-Peloux
Andrés Almansa
F. Champagnat
3DV
MDE
25
57
0
05 Sep 2018
Discriminative out-of-distribution detection for semantic segmentation
Discriminative out-of-distribution detection for semantic segmentation
Petra Bevandić
Ivan Kreso
Marin Orsic
Sinisa Segvic
42
79
0
23 Aug 2018
Uncertainty-aware Short-term Motion Prediction of Traffic Actors for
  Autonomous Driving
Uncertainty-aware Short-term Motion Prediction of Traffic Actors for Autonomous Driving
Nemanja Djuric
Vladan Radosavljevic
Henggang Cui
Thi Nguyen
Fang-Chieh Chou
Tsung-Han Lin
Nitin Singh
J. Schneider
37
206
0
17 Aug 2018
Deep Bayesian Active Learning for Natural Language Processing: Results
  of a Large-Scale Empirical Study
Deep Bayesian Active Learning for Natural Language Processing: Results of a Large-Scale Empirical Study
Aditya Siddhant
Zachary Chase Lipton
AI4CE
BDL
9
202
0
16 Aug 2018
Analyzing Inverse Problems with Invertible Neural Networks
Analyzing Inverse Problems with Invertible Neural Networks
Lynton Ardizzone
Jakob Kruse
Sebastian J. Wirkert
D. Rahner
E. Pellegrini
R. Klessen
Lena Maier-Hein
Carsten Rother
Ullrich Kothe
21
483
0
14 Aug 2018
Exploring Uncertainty Measures in Deep Networks for Multiple Sclerosis
  Lesion Detection and Segmentation
Exploring Uncertainty Measures in Deep Networks for Multiple Sclerosis Lesion Detection and Segmentation
T. Nair
Doina Precup
Douglas L. Arnold
Tal Arbel
UQCV
17
438
0
03 Aug 2018
Scalable Multi-Task Gaussian Process Tensor Regression for Normative
  Modeling of Structured Variation in Neuroimaging Data
Scalable Multi-Task Gaussian Process Tensor Regression for Normative Modeling of Structured Variation in Neuroimaging Data
S. M. Kia
Christian F. Beckmann
A. Marquand
10
7
0
31 Jul 2018
Uncertainty Quantification in CNN-Based Surface Prediction Using Shape
  Priors
Uncertainty Quantification in CNN-Based Surface Prediction Using Shape Priors
Katarína Tóthová
Sarah Parisot
M. J. Lee
Esther Puyol-Antón
Lisa M. Koch
A. King
E. Konukoglu
Marc Pollefeys
UQCV
17
21
0
30 Jul 2018
Efficient Uncertainty Estimation for Semantic Segmentation in Videos
Efficient Uncertainty Estimation for Semantic Segmentation in Videos
Po-Yu Huang
W. Hsu
Chun-Yueh Chiu
Tingfan Wu
Min Sun
BDL
UQCV
17
107
0
29 Jul 2018
Uncertainty Modelling in Deep Networks: Forecasting Short and Noisy
  Series
Uncertainty Modelling in Deep Networks: Forecasting Short and Noisy Series
Axel Brando
Jose A. Rodríguez-Serrano
M. Ciprian
Roberto Maestre
Jordi Vitrià
6
18
0
24 Jul 2018
Peeking Behind Objects: Layered Depth Prediction from a Single Image
Peeking Behind Objects: Layered Depth Prediction from a Single Image
Helisa Dhamo
Keisuke Tateno
Iro Laina
Nassir Navab
Federico Tombari
GAN
3DV
32
60
0
23 Jul 2018
Aleatoric uncertainty estimation with test-time augmentation for medical
  image segmentation with convolutional neural networks
Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks
Guotai Wang
Wenqi Li
Michael Aertsen
Jan Deprest
Sebastien Ourselin
Tom Kamiel Magda Vercauteren
UQCV
MedIm
OOD
67
582
0
19 Jul 2018
A Dataset of Laryngeal Endoscopic Images with Comparative Study on
  Convolution Neural Network Based Semantic Segmentation
A Dataset of Laryngeal Endoscopic Images with Comparative Study on Convolution Neural Network Based Semantic Segmentation
M. Laves
J. Bicker
L. Kahrs
T. Ortmaier
27
94
0
16 Jul 2018
Uncertainty and Interpretability in Convolutional Neural Networks for
  Semantic Segmentation of Colorectal Polyps
Uncertainty and Interpretability in Convolutional Neural Networks for Semantic Segmentation of Colorectal Polyps
Kristoffer Wickstrøm
Michael C. Kampffmeyer
Robert Jenssen
UQCV
19
77
0
16 Jul 2018
ENG: End-to-end Neural Geometry for Robust Depth and Pose Estimation
  using CNNs
ENG: End-to-end Neural Geometry for Robust Depth and Pose Estimation using CNNs
Thanuja Dharmasiri
Andrew Spek
Tom Drummond
3DV
MDE
23
16
0
16 Jul 2018
Adversarially Learned Mixture Model
Adversarially Learned Mixture Model
Andrew Jesson
Cécile Low-Kam
Tanya Nair
F. Soudan
Florent Chandelier
Nicolas Chapados
13
2
0
14 Jul 2018
Practical Obstacles to Deploying Active Learning
Practical Obstacles to Deploying Active Learning
David Lowell
Zachary Chase Lipton
Byron C. Wallace
33
111
0
12 Jul 2018
VFunc: a Deep Generative Model for Functions
VFunc: a Deep Generative Model for Functions
Philip Bachman
Riashat Islam
Alessandro Sordoni
Zafarali Ahmed
VLM
BDL
36
8
0
11 Jul 2018
Adaptive Adversarial Attack on Scene Text Recognition
Adaptive Adversarial Attack on Scene Text Recognition
Xiaoyong Yuan
Pan He
Xiaolin Li
Dapeng Oliver Wu
AAML
20
23
0
09 Jul 2018
Generative Probabilistic Novelty Detection with Adversarial Autoencoders
Generative Probabilistic Novelty Detection with Adversarial Autoencoders
Stanislav Pidhorskyi
Ranya Almohsen
Donald Adjeroh
Gianfranco Doretto
UQCV
21
319
0
06 Jul 2018
Direct Uncertainty Prediction for Medical Second Opinions
Direct Uncertainty Prediction for Medical Second Opinions
M. Raghu
Katy Blumer
Rory Sayres
Ziad Obermeyer
Robert D. Kleinberg
S. Mullainathan
Jon M. Kleinberg
OOD
UD
27
136
0
04 Jul 2018
Leveraging Uncertainty Estimates for Predicting Segmentation Quality
Leveraging Uncertainty Estimates for Predicting Segmentation Quality
Terrance Devries
Graham W. Taylor
UQCV
27
114
0
02 Jul 2018
Accurate Uncertainties for Deep Learning Using Calibrated Regression
Accurate Uncertainties for Deep Learning Using Calibrated Regression
Volodymyr Kuleshov
Nathan Fenner
Stefano Ermon
BDL
UQCV
41
622
0
01 Jul 2018
Towards safe deep learning: accurately quantifying biomarker uncertainty
  in neural network predictions
Towards safe deep learning: accurately quantifying biomarker uncertainty in neural network predictions
Zach Eaton-Rosen
Felix J. S. Bragman
Sotirios Bisdas
Sebastien Ourselin
M. Jorge Cardoso
UQCV
23
85
0
22 Jun 2018
Bayesian Prediction of Future Street Scenes through Importance Sampling based Optimization
Apratim Bhattacharyya
Mario Fritz
Bernt Schiele
UQCV
BDL
24
2
0
18 Jun 2018
Uncertainty in multitask learning: joint representations for
  probabilistic MR-only radiotherapy planning
Uncertainty in multitask learning: joint representations for probabilistic MR-only radiotherapy planning
Felix J. S. Bragman
Ryutaro Tanno
Zach Eaton-Rosen
Wenqi Li
D. Hawkes
Sebastien Ourselin
Daniel C. Alexander
J. McClelland
M. Jorge Cardoso
UQCV
33
49
0
18 Jun 2018
On Machine Learning and Structure for Mobile Robots
On Machine Learning and Structure for Mobile Robots
Markus Wulfmeier
27
6
0
15 Jun 2018
Uncertainty Estimations by Softplus normalization in Bayesian
  Convolutional Neural Networks with Variational Inference
Uncertainty Estimations by Softplus normalization in Bayesian Convolutional Neural Networks with Variational Inference
Kumar Shridhar
F. Laumann
Marcus Liwicki
BDL
UQCV
11
18
0
15 Jun 2018
Efficient Active Learning for Image Classification and Segmentation
  using a Sample Selection and Conditional Generative Adversarial Network
Efficient Active Learning for Image Classification and Segmentation using a Sample Selection and Conditional Generative Adversarial Network
Dwarikanath Mahapatra
Behzad Bozorgtabar
Jean-Philippe Thiran
M. Reyes
GAN
MedIm
25
176
0
14 Jun 2018
A Probabilistic U-Net for Segmentation of Ambiguous Images
A Probabilistic U-Net for Segmentation of Ambiguous Images
Simon A. A. Kohl
Bernardino Romera-Paredes
Clemens Meyer
J. Fauw
J. Ledsam
Klaus H. Maier-Hein
S. M. Ali Eslami
Danilo Jimenez Rezende
Olaf Ronneberger
UQCV
SSeg
47
568
0
13 Jun 2018
Synthetic Perfusion Maps: Imaging Perfusion Deficits in DSC-MRI with
  Deep Learning
Synthetic Perfusion Maps: Imaging Perfusion Deficits in DSC-MRI with Deep Learning
A. Hess
Raphael Meier
Johannes Kaesmacher
Simon Jung
Fabien Scalzo
D. Liebeskind
Roland Wiest
Richard McKinley
MedIm
24
15
0
11 Jun 2018
Robust Semantic Segmentation with Ladder-DenseNet Models
Robust Semantic Segmentation with Ladder-DenseNet Models
Ivan Kreso
Marin Orsic
Petra Bevandić
Sinisa Segvic
SSeg
25
12
0
09 Jun 2018
Uncertainty-driven Sanity Check: Application to Postoperative Brain
  Tumor Cavity Segmentation
Uncertainty-driven Sanity Check: Application to Postoperative Brain Tumor Cavity Segmentation
Alain Jungo
Raphael Meier
E. Ermiş
Evelyn Herrmann
M. Reyes
UQCV
13
46
0
08 Jun 2018
On the Effect of Inter-observer Variability for a Reliable Estimation of
  Uncertainty of Medical Image Segmentation
On the Effect of Inter-observer Variability for a Reliable Estimation of Uncertainty of Medical Image Segmentation
Alain Jungo
Raphael Meier
E. Ermiş
Marcela Blatti-Moreno
Evelyn Herrmann
Roland Wiest
M. Reyes
UQCV
17
96
0
07 Jun 2018
Deep Ordinal Regression Network for Monocular Depth Estimation
Deep Ordinal Regression Network for Monocular Depth Estimation
Huan Fu
Biwei Huang
Chaohui Wang
Kayhan Batmanghelich
Dacheng Tao
MDE
200
1,711
0
06 Jun 2018
MILD-Net: Minimal Information Loss Dilated Network for Gland Instance
  Segmentation in Colon Histology Images
MILD-Net: Minimal Information Loss Dilated Network for Gland Instance Segmentation in Colon Histology Images
S. Graham
Hao Chen
Jevgenij Gamper
Qi Dou
Pheng-Ann Heng
David R. J. Snead
Yee Wah Tsang
Nasir M. Rajpoot
MedIm
19
302
0
05 Jun 2018
Evidential Deep Learning to Quantify Classification Uncertainty
Evidential Deep Learning to Quantify Classification Uncertainty
Murat Sensoy
Lance M. Kaplan
M. Kandemir
OOD
UQCV
EDL
BDL
90
953
0
05 Jun 2018
Sufficient Conditions for Idealised Models to Have No Adversarial
  Examples: a Theoretical and Empirical Study with Bayesian Neural Networks
Sufficient Conditions for Idealised Models to Have No Adversarial Examples: a Theoretical and Empirical Study with Bayesian Neural Networks
Y. Gal
Lewis Smith
AAML
BDL
52
34
0
02 Jun 2018
Previous
123...42434445
Next