ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.01687
35
1

Uncertainty Quantification with Bayesian Higher Order ReLU KANs

2 October 2024
J. Giroux
Cristiano Fanelli
    UQCV
ArXivPDFHTML
Abstract

We introduce the first method of uncertainty quantification in the domain of Kolmogorov-Arnold Networks, specifically focusing on (Higher Order) ReLUKANs to enhance computational efficiency given the computational demands of Bayesian methods. The method we propose is general in nature, providing access to both epistemic and aleatoric uncertainties. It is also capable of generalization to other various basis functions. We validate our method through a series of closure tests, including simple one-dimensional functions and application to the domain of (Stochastic) Partial Differential Equations. Referring to the latter, we demonstrate the method's ability to correctly identify functional dependencies introduced through the inclusion of a stochastic term. The code supporting this work can be found at https://github.com/wmdataphys/Bayesian-HR-KAN

View on arXiv
Comments on this paper