Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1703.00443
Cited By
v1
v2
v3
v4
v5 (latest)
OptNet: Differentiable Optimization as a Layer in Neural Networks
1 March 2017
Brandon Amos
J. Zico Kolter
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"OptNet: Differentiable Optimization as a Layer in Neural Networks"
50 / 583 papers shown
Title
On sensitivity of meta-learning to support data
Mayank Agarwal
Mikhail Yurochkin
Yuekai Sun
100
21
0
26 Oct 2021
Integrated Conditional Estimation-Optimization
Sirui Chen
Paul Grigas
Zuo‐Jun Max Shen
CML
86
25
0
24 Oct 2021
Differentiable Rendering with Perturbed Optimizers
Quentin Le Lidec
Ivan Laptev
Cordelia Schmid
Justin Carpentier
76
15
0
18 Oct 2021
Abstract Interpretation of Fixpoint Iterators with Applications to Neural Networks
Mark Niklas Muller
Marc Fischer
Robin Staab
Martin Vechev
56
3
0
14 Oct 2021
Music Source Separation with Deep Equilibrium Models
Yuichiro Koyama
Naoki Murata
Stefan Uhlich
Giorgio Fabbro
Shusuke Takahashi
Yuki Mitsufuji
70
5
0
13 Oct 2021
Fast Approximations for Job Shop Scheduling: A Lagrangian Dual Deep Learning Method
James Kotary
Ferdinando Fioretto
Pascal Van Hentenryck
100
20
0
12 Oct 2021
A global convergence theory for deep ReLU implicit networks via over-parameterization
Tianxiang Gao
Hailiang Liu
Jia Liu
Hridesh Rajan
Hongyang Gao
MLT
102
16
0
11 Oct 2021
Safe Reinforcement Learning Using Robust Control Barrier Functions
Y. Emam
Gennaro Notomista
Paul Glotfelter
Z. Kira
M. Egerstedt
OffRL
78
43
0
11 Oct 2021
A composable autoencoder-based iterative algorithm for accelerating numerical simulations
Rishikesh Ranade
C. Hill
Haiyang He
Amir Maleki
Norman Chang
Jay Pathak
AI4CE
83
6
0
07 Oct 2021
Differentiable Equilibrium Computation with Decision Diagrams for Stackelberg Models of Combinatorial Congestion Games
Shinsaku Sakaue
Kengo Nakamura
31
3
0
05 Oct 2021
Differentiable Spline Approximations
Minsu Cho
Aditya Balu
Ameya Joshi
Anjana Prasad
Biswajit Khara
Soumik Sarkar
Baskar Ganapathysubramanian
A. Krishnamurthy
Chinmay Hegde
68
4
0
04 Oct 2021
A Review of the Gumbel-max Trick and its Extensions for Discrete Stochasticity in Machine Learning
Iris A. M. Huijben
W. Kool
Max B. Paulus
Ruud J. G. van Sloun
115
99
0
04 Oct 2021
Implicit Riemannian Concave Potential Maps
Danilo Jimenez Rezende
S. Racanière
AI4CE
98
7
0
04 Oct 2021
Inducing Equilibria via Incentives: Simultaneous Design-and-Play Ensures Global Convergence
Boyi Liu
Jiayang Li
Zhuoran Yang
Hoi-To Wai
Mingyi Hong
Y. Nie
Zhaoran Wang
146
20
0
04 Oct 2021
Lyapunov-stable neural-network control
Hongkai Dai
Benoit Landry
Lujie Yang
Marco Pavone
Russ Tedrake
102
125
0
29 Sep 2021
DeepPSL: End-to-end perception and reasoning
Sridhar Dasaratha
Sai Akhil Puranam
Karmvir Singh Phogat
Sunil R. Tiyyagura
Nigel P. Duffy
BDL
ReLM
LRM
98
3
0
28 Sep 2021
Graph Neural Network-based Resource Allocation Strategies for Multi-Object Spectroscopy
Tianshu Wang
P. Melchior
91
7
0
27 Sep 2021
GPU Accelerated Batch Multi-Convex Trajectory Optimization for a Rectangular Holonomic Mobile Robot
Fatemeh Rastgar
Houman Masnavi
Karl Kruusamäe
A. Aabloo
A. K. Singh
51
1
0
27 Sep 2021
Recursive Feasibility Guided Optimal Parameter Adaptation of Differential Convex Optimization Policies for Safety-Critical Systems
Hardik Parwana
Dimitra Panagou
66
19
0
22 Sep 2021
Is Attention Better Than Matrix Decomposition?
Zhengyang Geng
Meng-Hao Guo
Hongxu Chen
Xia Li
Ke Wei
Zhouchen Lin
125
142
0
09 Sep 2021
End-to-End Demand Response Model Identification and Baseline Estimation with Deep Learning
Yuanyuan Shi
Bolun Xu
30
1
0
02 Sep 2021
Implicit Behavioral Cloning
Peter R. Florence
Corey Lynch
Andy Zeng
Oscar Ramirez
Ayzaan Wahid
Laura Downs
Adrian S. Wong
Johnny Lee
Igor Mordatch
Jonathan Tompson
OffRL
153
392
0
01 Sep 2021
Differentiable Moving Horizon Estimation for Robust Flight Control
Bingheng Wang
Zhengtian Ma
Shupeng Lai
Lin Zhao
Tong-heng Lee
84
6
0
06 Aug 2021
LEO: Learning Energy-based Models in Factor Graph Optimization
Paloma Sodhi
Eric Dexheimer
Mustafa Mukadam
Stuart Anderson
Michael Kaess
108
17
0
04 Aug 2021
Neural Fixed-Point Acceleration for Convex Optimization
Shobha Venkataraman
Brandon Amos
94
14
0
21 Jul 2021
Constrained Feedforward Neural Network Training via Reachability Analysis
Long Kiu Chung
Adam Dai
Derek Knowles
Shreyas Kousik
Grace Gao
56
8
0
16 Jul 2021
An End-to-End Differentiable Framework for Contact-Aware Robot Design
Jie Xu
Tao Chen
Lara Zlokapa
Michael Foshey
Wojciech Matusik
Shinjiro Sueda
Pulkit Agrawal
104
91
0
15 Jul 2021
Fast Contact-Implicit Model-Predictive Control
Simon Le Cleac'h
Taylor A. Howell
Shuo Yang
Chia-Yen Lee
John Z. Zhang
Arun L. Bishop
Mac Schwager
Zachary Manchester
191
85
0
12 Jul 2021
Learning structured approximations of combinatorial optimization problems
Axel Parmentier
TPM
24
4
0
09 Jul 2021
Stabilizing Equilibrium Models by Jacobian Regularization
Shaojie Bai
V. Koltun
J. Zico Kolter
86
59
0
28 Jun 2021
DiffLoop: Tuning PID controllers by differentiating through the feedback loop
Athindran Ramesh Kumar
Peter J. Ramadge
78
13
0
19 Jun 2021
The Perils of Learning Before Optimizing
Chris Cameron
Jason S. Hartford
Taylor Lundy
Kevin Leyton-Brown
20
19
0
18 Jun 2021
Techniques for Symbol Grounding with SATNet
Sever Topan
David Rolnick
X. Si
NAI
98
23
0
16 Jun 2021
Learning Revenue-Maximizing Auctions With Differentiable Matching
Michael J. Curry
Uro Lyi
Tom Goldstein
John P. Dickerson
46
20
0
15 Jun 2021
Differentiable Robust LQR Layers
Ngo Anh Vien
Gerhard Neumann
54
4
0
10 Jun 2021
Nonsmooth Implicit Differentiation for Machine Learning and Optimization
Jérôme Bolte
Tam Le
Edouard Pauwels
Antonio Silveti-Falls
88
57
0
08 Jun 2021
Learning MDPs from Features: Predict-Then-Optimize for Sequential Decision Problems by Reinforcement Learning
Kai Wang
Sanket Shah
Haipeng Chen
Andrew Perrault
Finale Doshi-Velez
Milind Tambe
OffRL
121
6
0
06 Jun 2021
Combinatorial Optimization for Panoptic Segmentation: A Fully Differentiable Approach
Ahmed Abbas
Paul Swoboda
66
14
0
06 Jun 2021
Learning Hard Optimization Problems: A Data Generation Perspective
James Kotary
Ferdinando Fioretto
Pascal Van Hentenryck
54
38
0
04 Jun 2021
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions
Mathias Niepert
Pasquale Minervini
Luca Franceschi
97
87
0
03 Jun 2021
Convergent Graph Solvers
Junyoung Park
J. Choo
Jinkyoo Park
80
13
0
03 Jun 2021
Physics-Guided Discovery of Highly Nonlinear Parametric Partial Differential Equations
Yingtao Luo
Qiang Liu
Yuntian Chen
Wenbo Hu
Tian Tian
Jun Zhu
DiffM
113
4
0
02 Jun 2021
Operator Splitting for Learning to Predict Equilibria in Convex Games
Daniel McKenzie
Howard Heaton
Qiuwei Li
Samy Wu Fung
Stanley Osher
Wotao Yin
78
0
0
02 Jun 2021
Large-Scale Wasserstein Gradient Flows
Petr Mokrov
Alexander Korotin
Lingxiao Li
Aude Genevay
Justin Solomon
Evgeny Burnaev
103
76
0
01 Jun 2021
SHINE: SHaring the INverse Estimate from the forward pass for bi-level optimization and implicit models
Zaccharie Ramzi
Florian Mannel
Shaojie Bai
Jean-Luc Starck
P. Ciuciu
Thomas Moreau
124
29
0
01 Jun 2021
Efficient and Modular Implicit Differentiation
Mathieu Blondel
Quentin Berthet
Marco Cuturi
Roy Frostig
Stephan Hoyer
Felipe Llinares-López
Fabian Pedregosa
Jean-Philippe Vert
126
238
0
31 May 2021
Safe Pontryagin Differentiable Programming
Wanxin Jin
Shaoshuai Mou
George J. Pappas
99
41
0
31 May 2021
Optimization Induced Equilibrium Networks
Xingyu Xie
Qiuhao Wang
Zenan Ling
Xia Li
Yisen Wang
Guangcan Liu
Zhouchen Lin
75
9
0
27 May 2021
Structural Causal Models Reveal Confounder Bias in Linear Program Modelling
Matej Zečević
Devendra Singh Dhami
Kristian Kersting
AAML
61
1
0
26 May 2021
Enforcing Policy Feasibility Constraints through Differentiable Projection for Energy Optimization
Bingqing Chen
Neural Network
Kyri Baker
J. Zico Kolter
Mario Berges
88
61
0
19 May 2021
Previous
1
2
3
...
10
11
12
7
8
9
Next