ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.00443
  4. Cited By
OptNet: Differentiable Optimization as a Layer in Neural Networks
v1v2v3v4v5 (latest)

OptNet: Differentiable Optimization as a Layer in Neural Networks

1 March 2017
Brandon Amos
J. Zico Kolter
ArXiv (abs)PDFHTML

Papers citing "OptNet: Differentiable Optimization as a Layer in Neural Networks"

50 / 583 papers shown
Title
On sensitivity of meta-learning to support data
On sensitivity of meta-learning to support data
Mayank Agarwal
Mikhail Yurochkin
Yuekai Sun
100
21
0
26 Oct 2021
Integrated Conditional Estimation-Optimization
Integrated Conditional Estimation-Optimization
Sirui Chen
Paul Grigas
Zuo‐Jun Max Shen
CML
86
25
0
24 Oct 2021
Differentiable Rendering with Perturbed Optimizers
Differentiable Rendering with Perturbed Optimizers
Quentin Le Lidec
Ivan Laptev
Cordelia Schmid
Justin Carpentier
76
15
0
18 Oct 2021
Abstract Interpretation of Fixpoint Iterators with Applications to
  Neural Networks
Abstract Interpretation of Fixpoint Iterators with Applications to Neural Networks
Mark Niklas Muller
Marc Fischer
Robin Staab
Martin Vechev
56
3
0
14 Oct 2021
Music Source Separation with Deep Equilibrium Models
Music Source Separation with Deep Equilibrium Models
Yuichiro Koyama
Naoki Murata
Stefan Uhlich
Giorgio Fabbro
Shusuke Takahashi
Yuki Mitsufuji
70
5
0
13 Oct 2021
Fast Approximations for Job Shop Scheduling: A Lagrangian Dual Deep
  Learning Method
Fast Approximations for Job Shop Scheduling: A Lagrangian Dual Deep Learning Method
James Kotary
Ferdinando Fioretto
Pascal Van Hentenryck
100
20
0
12 Oct 2021
A global convergence theory for deep ReLU implicit networks via
  over-parameterization
A global convergence theory for deep ReLU implicit networks via over-parameterization
Tianxiang Gao
Hailiang Liu
Jia Liu
Hridesh Rajan
Hongyang Gao
MLT
102
16
0
11 Oct 2021
Safe Reinforcement Learning Using Robust Control Barrier Functions
Safe Reinforcement Learning Using Robust Control Barrier Functions
Y. Emam
Gennaro Notomista
Paul Glotfelter
Z. Kira
M. Egerstedt
OffRL
78
43
0
11 Oct 2021
A composable autoencoder-based iterative algorithm for accelerating
  numerical simulations
A composable autoencoder-based iterative algorithm for accelerating numerical simulations
Rishikesh Ranade
C. Hill
Haiyang He
Amir Maleki
Norman Chang
Jay Pathak
AI4CE
83
6
0
07 Oct 2021
Differentiable Equilibrium Computation with Decision Diagrams for
  Stackelberg Models of Combinatorial Congestion Games
Differentiable Equilibrium Computation with Decision Diagrams for Stackelberg Models of Combinatorial Congestion Games
Shinsaku Sakaue
Kengo Nakamura
31
3
0
05 Oct 2021
Differentiable Spline Approximations
Differentiable Spline Approximations
Minsu Cho
Aditya Balu
Ameya Joshi
Anjana Prasad
Biswajit Khara
Soumik Sarkar
Baskar Ganapathysubramanian
A. Krishnamurthy
Chinmay Hegde
68
4
0
04 Oct 2021
A Review of the Gumbel-max Trick and its Extensions for Discrete
  Stochasticity in Machine Learning
A Review of the Gumbel-max Trick and its Extensions for Discrete Stochasticity in Machine Learning
Iris A. M. Huijben
W. Kool
Max B. Paulus
Ruud J. G. van Sloun
115
99
0
04 Oct 2021
Implicit Riemannian Concave Potential Maps
Implicit Riemannian Concave Potential Maps
Danilo Jimenez Rezende
S. Racanière
AI4CE
98
7
0
04 Oct 2021
Inducing Equilibria via Incentives: Simultaneous Design-and-Play Ensures
  Global Convergence
Inducing Equilibria via Incentives: Simultaneous Design-and-Play Ensures Global Convergence
Boyi Liu
Jiayang Li
Zhuoran Yang
Hoi-To Wai
Mingyi Hong
Y. Nie
Zhaoran Wang
146
20
0
04 Oct 2021
Lyapunov-stable neural-network control
Lyapunov-stable neural-network control
Hongkai Dai
Benoit Landry
Lujie Yang
Marco Pavone
Russ Tedrake
102
125
0
29 Sep 2021
DeepPSL: End-to-end perception and reasoning
DeepPSL: End-to-end perception and reasoning
Sridhar Dasaratha
Sai Akhil Puranam
Karmvir Singh Phogat
Sunil R. Tiyyagura
Nigel P. Duffy
BDLReLMLRM
98
3
0
28 Sep 2021
Graph Neural Network-based Resource Allocation Strategies for
  Multi-Object Spectroscopy
Graph Neural Network-based Resource Allocation Strategies for Multi-Object Spectroscopy
Tianshu Wang
P. Melchior
91
7
0
27 Sep 2021
GPU Accelerated Batch Multi-Convex Trajectory Optimization for a
  Rectangular Holonomic Mobile Robot
GPU Accelerated Batch Multi-Convex Trajectory Optimization for a Rectangular Holonomic Mobile Robot
Fatemeh Rastgar
Houman Masnavi
Karl Kruusamäe
A. Aabloo
A. K. Singh
51
1
0
27 Sep 2021
Recursive Feasibility Guided Optimal Parameter Adaptation of
  Differential Convex Optimization Policies for Safety-Critical Systems
Recursive Feasibility Guided Optimal Parameter Adaptation of Differential Convex Optimization Policies for Safety-Critical Systems
Hardik Parwana
Dimitra Panagou
66
19
0
22 Sep 2021
Is Attention Better Than Matrix Decomposition?
Is Attention Better Than Matrix Decomposition?
Zhengyang Geng
Meng-Hao Guo
Hongxu Chen
Xia Li
Ke Wei
Zhouchen Lin
125
142
0
09 Sep 2021
End-to-End Demand Response Model Identification and Baseline Estimation
  with Deep Learning
End-to-End Demand Response Model Identification and Baseline Estimation with Deep Learning
Yuanyuan Shi
Bolun Xu
30
1
0
02 Sep 2021
Implicit Behavioral Cloning
Implicit Behavioral Cloning
Peter R. Florence
Corey Lynch
Andy Zeng
Oscar Ramirez
Ayzaan Wahid
Laura Downs
Adrian S. Wong
Johnny Lee
Igor Mordatch
Jonathan Tompson
OffRL
153
392
0
01 Sep 2021
Differentiable Moving Horizon Estimation for Robust Flight Control
Differentiable Moving Horizon Estimation for Robust Flight Control
Bingheng Wang
Zhengtian Ma
Shupeng Lai
Lin Zhao
Tong-heng Lee
84
6
0
06 Aug 2021
LEO: Learning Energy-based Models in Factor Graph Optimization
LEO: Learning Energy-based Models in Factor Graph Optimization
Paloma Sodhi
Eric Dexheimer
Mustafa Mukadam
Stuart Anderson
Michael Kaess
108
17
0
04 Aug 2021
Neural Fixed-Point Acceleration for Convex Optimization
Neural Fixed-Point Acceleration for Convex Optimization
Shobha Venkataraman
Brandon Amos
94
14
0
21 Jul 2021
Constrained Feedforward Neural Network Training via Reachability
  Analysis
Constrained Feedforward Neural Network Training via Reachability Analysis
Long Kiu Chung
Adam Dai
Derek Knowles
Shreyas Kousik
Grace Gao
56
8
0
16 Jul 2021
An End-to-End Differentiable Framework for Contact-Aware Robot Design
An End-to-End Differentiable Framework for Contact-Aware Robot Design
Jie Xu
Tao Chen
Lara Zlokapa
Michael Foshey
Wojciech Matusik
Shinjiro Sueda
Pulkit Agrawal
104
91
0
15 Jul 2021
Fast Contact-Implicit Model-Predictive Control
Fast Contact-Implicit Model-Predictive Control
Simon Le Cleac'h
Taylor A. Howell
Shuo Yang
Chia-Yen Lee
John Z. Zhang
Arun L. Bishop
Mac Schwager
Zachary Manchester
191
85
0
12 Jul 2021
Learning structured approximations of combinatorial optimization
  problems
Learning structured approximations of combinatorial optimization problems
Axel Parmentier
TPM
24
4
0
09 Jul 2021
Stabilizing Equilibrium Models by Jacobian Regularization
Stabilizing Equilibrium Models by Jacobian Regularization
Shaojie Bai
V. Koltun
J. Zico Kolter
86
59
0
28 Jun 2021
DiffLoop: Tuning PID controllers by differentiating through the feedback
  loop
DiffLoop: Tuning PID controllers by differentiating through the feedback loop
Athindran Ramesh Kumar
Peter J. Ramadge
78
13
0
19 Jun 2021
The Perils of Learning Before Optimizing
The Perils of Learning Before Optimizing
Chris Cameron
Jason S. Hartford
Taylor Lundy
Kevin Leyton-Brown
20
19
0
18 Jun 2021
Techniques for Symbol Grounding with SATNet
Techniques for Symbol Grounding with SATNet
Sever Topan
David Rolnick
X. Si
NAI
98
23
0
16 Jun 2021
Learning Revenue-Maximizing Auctions With Differentiable Matching
Learning Revenue-Maximizing Auctions With Differentiable Matching
Michael J. Curry
Uro Lyi
Tom Goldstein
John P. Dickerson
46
20
0
15 Jun 2021
Differentiable Robust LQR Layers
Differentiable Robust LQR Layers
Ngo Anh Vien
Gerhard Neumann
54
4
0
10 Jun 2021
Nonsmooth Implicit Differentiation for Machine Learning and Optimization
Nonsmooth Implicit Differentiation for Machine Learning and Optimization
Jérôme Bolte
Tam Le
Edouard Pauwels
Antonio Silveti-Falls
88
57
0
08 Jun 2021
Learning MDPs from Features: Predict-Then-Optimize for Sequential
  Decision Problems by Reinforcement Learning
Learning MDPs from Features: Predict-Then-Optimize for Sequential Decision Problems by Reinforcement Learning
Kai Wang
Sanket Shah
Haipeng Chen
Andrew Perrault
Finale Doshi-Velez
Milind Tambe
OffRL
121
6
0
06 Jun 2021
Combinatorial Optimization for Panoptic Segmentation: A Fully
  Differentiable Approach
Combinatorial Optimization for Panoptic Segmentation: A Fully Differentiable Approach
Ahmed Abbas
Paul Swoboda
66
14
0
06 Jun 2021
Learning Hard Optimization Problems: A Data Generation Perspective
Learning Hard Optimization Problems: A Data Generation Perspective
James Kotary
Ferdinando Fioretto
Pascal Van Hentenryck
54
38
0
04 Jun 2021
Implicit MLE: Backpropagating Through Discrete Exponential Family
  Distributions
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions
Mathias Niepert
Pasquale Minervini
Luca Franceschi
97
87
0
03 Jun 2021
Convergent Graph Solvers
Convergent Graph Solvers
Junyoung Park
J. Choo
Jinkyoo Park
80
13
0
03 Jun 2021
Physics-Guided Discovery of Highly Nonlinear Parametric Partial
  Differential Equations
Physics-Guided Discovery of Highly Nonlinear Parametric Partial Differential Equations
Yingtao Luo
Qiang Liu
Yuntian Chen
Wenbo Hu
Tian Tian
Jun Zhu
DiffM
113
4
0
02 Jun 2021
Operator Splitting for Learning to Predict Equilibria in Convex Games
Operator Splitting for Learning to Predict Equilibria in Convex Games
Daniel McKenzie
Howard Heaton
Qiuwei Li
Samy Wu Fung
Stanley Osher
Wotao Yin
78
0
0
02 Jun 2021
Large-Scale Wasserstein Gradient Flows
Large-Scale Wasserstein Gradient Flows
Petr Mokrov
Alexander Korotin
Lingxiao Li
Aude Genevay
Justin Solomon
Evgeny Burnaev
103
76
0
01 Jun 2021
SHINE: SHaring the INverse Estimate from the forward pass for bi-level
  optimization and implicit models
SHINE: SHaring the INverse Estimate from the forward pass for bi-level optimization and implicit models
Zaccharie Ramzi
Florian Mannel
Shaojie Bai
Jean-Luc Starck
P. Ciuciu
Thomas Moreau
124
29
0
01 Jun 2021
Efficient and Modular Implicit Differentiation
Efficient and Modular Implicit Differentiation
Mathieu Blondel
Quentin Berthet
Marco Cuturi
Roy Frostig
Stephan Hoyer
Felipe Llinares-López
Fabian Pedregosa
Jean-Philippe Vert
126
238
0
31 May 2021
Safe Pontryagin Differentiable Programming
Safe Pontryagin Differentiable Programming
Wanxin Jin
Shaoshuai Mou
George J. Pappas
99
41
0
31 May 2021
Optimization Induced Equilibrium Networks
Optimization Induced Equilibrium Networks
Xingyu Xie
Qiuhao Wang
Zenan Ling
Xia Li
Yisen Wang
Guangcan Liu
Zhouchen Lin
75
9
0
27 May 2021
Structural Causal Models Reveal Confounder Bias in Linear Program
  Modelling
Structural Causal Models Reveal Confounder Bias in Linear Program Modelling
Matej Zečević
Devendra Singh Dhami
Kristian Kersting
AAML
61
1
0
26 May 2021
Enforcing Policy Feasibility Constraints through Differentiable
  Projection for Energy Optimization
Enforcing Policy Feasibility Constraints through Differentiable Projection for Energy Optimization
Bingqing Chen
Neural Network
Kyri Baker
J. Zico Kolter
Mario Berges
88
61
0
19 May 2021
Previous
123...101112789
Next