ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.05415
8
39

Safe Reinforcement Learning Using Robust Control Barrier Functions

11 October 2021
Y. Emam
Gennaro Notomista
Paul Glotfelter
Z. Kira
M. Egerstedt
    OffRL
ArXivPDFHTML
Abstract

Reinforcement Learning (RL) has been shown to be effective in many scenarios. However, it typically requires the exploration of a sufficiently large number of state-action pairs, some of which may be unsafe. Consequently, its application to safety-critical systems remains a challenge. An increasingly common approach to address safety involves the addition of a safety layer that projects the RL actions onto a safe set of actions. In turn, a difficulty for such frameworks is how to effectively couple RL with the safety layer to improve the learning performance. In this paper, we frame safety as a differentiable robust-control-barrier-function layer in a model-based RL framework. Moreover, we also propose an approach to modularly learn the underlying reward-driven task, independent of safety constraints. We demonstrate that this approach both ensures safety and effectively guides exploration during training in a range of experiments, including zero-shot transfer when the reward is learned in a modular way.

View on arXiv
Comments on this paper