ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.00443
  4. Cited By
OptNet: Differentiable Optimization as a Layer in Neural Networks
v1v2v3v4v5 (latest)

OptNet: Differentiable Optimization as a Layer in Neural Networks

1 March 2017
Brandon Amos
J. Zico Kolter
ArXiv (abs)PDFHTML

Papers citing "OptNet: Differentiable Optimization as a Layer in Neural Networks"

33 / 583 papers shown
Title
Deep Unfolding of a Proximal Interior Point Method for Image Restoration
Deep Unfolding of a Proximal Interior Point Method for Image Restoration
Carla Bertocchi
Émilie Chouzenoux
M. Corbineau
J. Pesquet
M. Prato
107
108
0
11 Dec 2018
Learning Representations of Sets through Optimized Permutations
Learning Representations of Sets through Optimized Permutations
Yan Zhang
Jonathon S. Hare
Adam Prugel-Bennett
SSL
81
25
0
10 Dec 2018
Deep Inverse Optimization
Deep Inverse Optimization
Yingcong Tan
Andrew Delong
Daria Terekhov
83
22
0
03 Dec 2018
Resource Constrained Deep Reinforcement Learning
Resource Constrained Deep Reinforcement Learning
Abhinav Bhatia
Pradeep Varakantham
Akshat Kumar
81
47
0
03 Dec 2018
Fast UAV Trajectory Optimization using Bilevel Optimization with
  Analytical Gradients
Fast UAV Trajectory Optimization using Bilevel Optimization with Analytical Gradients
Weidong Sun
Gao Tang
Kris K. Hauser
68
56
0
27 Nov 2018
Joint Mapping and Calibration via Differentiable Sensor Fusion
Joint Mapping and Calibration via Differentiable Sensor Fusion
Jonathan P. Chen
F. Obermeyer
V. Lyapunov
L. Gueguen
Noah D. Goodman
33
0
0
21 Nov 2018
Simple, Distributed, and Accelerated Probabilistic Programming
Simple, Distributed, and Accelerated Probabilistic Programming
Like Hui
Matthew Hoffman
Siyuan Ma
Christopher Suter
Srinivas Vasudevan
Alexey Radul
M. Belkin
Rif A. Saurous
BDL
85
56
0
05 Nov 2018
Differentiable MPC for End-to-end Planning and Control
Differentiable MPC for End-to-end Planning and Control
Brandon Amos
I. D. Rodriguez
Jacob Sacks
Byron Boots
J. Zico Kolter
110
378
0
31 Oct 2018
Melding the Data-Decisions Pipeline: Decision-Focused Learning for
  Combinatorial Optimization
Melding the Data-Decisions Pipeline: Decision-Focused Learning for Combinatorial Optimization
Bryan Wilder
B. Dilkina
Milind Tambe
OffRLAI4CE
100
303
0
14 Sep 2018
Deep Graph Laplacian Regularization for Robust Denoising of Real Images
Deep Graph Laplacian Regularization for Robust Denoising of Real Images
Jin Zeng
Jiahao Pang
Wenxiu Sun
Gene Cheung
75
34
0
31 Jul 2018
Geo-Supervised Visual Depth Prediction
Geo-Supervised Visual Depth Prediction
Xiaohan Fei
A. Wong
Stefano Soatto
MDE
101
73
0
30 Jul 2018
Integrating Algorithmic Planning and Deep Learning for Partially
  Observable Navigation
Integrating Algorithmic Planning and Deep Learning for Partially Observable Navigation
Peter Karkus
David Hsu
Wee Sun Lee
62
10
0
17 Jul 2018
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
554
5,187
0
19 Jun 2018
BA-Net: Dense Bundle Adjustment Network
BA-Net: Dense Bundle Adjustment Network
Chengzhou Tang
P. Tan
3DV
104
290
0
13 Jun 2018
On gradient regularizers for MMD GANs
On gradient regularizers for MMD GANs
Michael Arbel
Danica J. Sutherland
Mikolaj Binkowski
Arthur Gretton
97
95
0
29 May 2018
Learning to Optimize Contextually Constrained Problems for Real-Time
  Decision-Generation
Learning to Optimize Contextually Constrained Problems for Real-Time Decision-Generation
A. Babier
Timothy C. Y. Chan
Adam Diamant
Rafid Mahmood
73
1
0
23 May 2018
Particle Filter Networks with Application to Visual Localization
Particle Filter Networks with Application to Visual Localization
Peter Karkus
David Hsu
Wee Sun Lee
3DPC
63
118
0
23 May 2018
Optimizing for Generalization in Machine Learning with Cross-Validation
  Gradients
Optimizing for Generalization in Machine Learning with Cross-Validation Gradients
Shane T. Barratt
Rishi Sharma
43
9
0
18 May 2018
Backpropagating through Structured Argmax using a SPIGOT
Backpropagating through Structured Argmax using a SPIGOT
Hao Peng
Sam Thomson
Noah A. Smith
88
42
0
12 May 2018
What game are we playing? End-to-end learning in normal and extensive
  form games
What game are we playing? End-to-end learning in normal and extensive form games
Chun Kai Ling
Fei Fang
J. Zico Kolter
120
84
0
07 May 2018
Universal Planning Networks
Universal Planning Networks
A. Srinivas
Allan Jabri
Pieter Abbeel
Sergey Levine
Chelsea Finn
SSL
81
145
0
02 Apr 2018
Reviving and Improving Recurrent Back-Propagation
Reviving and Improving Recurrent Back-Propagation
Renjie Liao
Yuwen Xiong
Ethan Fetaya
Lisa Zhang
Kijung Yoon
Xaq Pitkow
R. Urtasun
R. Zemel
BDL
104
121
0
16 Mar 2018
Neural Conditional Gradients
Neural Conditional Gradients
P. Schramowski
Christian Bauckhage
Kristian Kersting
55
2
0
12 Mar 2018
SparseMAP: Differentiable Sparse Structured Inference
SparseMAP: Differentiable Sparse Structured Inference
Vlad Niculae
André F. T. Martins
Mathieu Blondel
Claire Cardie
51
123
0
12 Feb 2018
Differentiable Dynamic Programming for Structured Prediction and
  Attention
Differentiable Dynamic Programming for Structured Prediction and Attention
A. Mensch
Mathieu Blondel
73
131
0
11 Feb 2018
Semi-Amortized Variational Autoencoders
Semi-Amortized Variational Autoencoders
Yoon Kim
Sam Wiseman
Andrew C. Miller
David Sontag
Alexander M. Rush
BDLDRL
172
243
0
07 Feb 2018
Safe Exploration in Continuous Action Spaces
Safe Exploration in Continuous Action Spaces
Gal Dalal
Krishnamurthy Dvijotham
Matej Vecerík
Todd Hester
Cosmin Paduraru
Yuval Tassa
55
444
0
26 Jan 2018
Extreme Dimension Reduction for Handling Covariate Shift
Extreme Dimension Reduction for Handling Covariate Shift
Fulton Wang
Cynthia Rudin
43
1
0
29 Nov 2017
Recurrent Relational Networks
Recurrent Relational Networks
Rasmus Berg Palm
Ulrich Paquet
Ole Winther
GNNReLMNAI
132
142
0
21 Nov 2017
OptLayer - Practical Constrained Optimization for Deep Reinforcement
  Learning in the Real World
OptLayer - Practical Constrained Optimization for Deep Reinforcement Learning in the Real World
Tu-Hoa Pham
Giovanni De Magistris
Ryuki Tachibana
OffRL
71
143
0
22 Sep 2017
A Regularized Framework for Sparse and Structured Neural Attention
A Regularized Framework for Sparse and Structured Neural Attention
Vlad Niculae
Mathieu Blondel
94
100
0
22 May 2017
Task-based End-to-end Model Learning in Stochastic Optimization
Task-based End-to-end Model Learning in Stochastic Optimization
P. Donti
Brandon Amos
J. Zico Kolter
113
24
0
13 Mar 2017
Automatic differentiation in machine learning: a survey
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINNAI4CEODL
202
2,840
0
20 Feb 2015
Previous
123...101112