ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.04223
11
121

SparseMAP: Differentiable Sparse Structured Inference

12 February 2018
Vlad Niculae
André F. T. Martins
Mathieu Blondel
Claire Cardie
ArXivPDFHTML
Abstract

Structured prediction requires searching over a combinatorial number of structures. To tackle it, we introduce SparseMAP: a new method for sparse structured inference, and its natural loss function. SparseMAP automatically selects only a few global structures: it is situated between MAP inference, which picks a single structure, and marginal inference, which assigns probability mass to all structures, including implausible ones. Importantly, SparseMAP can be computed using only calls to a MAP oracle, making it applicable to problems with intractable marginal inference, e.g., linear assignment. Sparsity makes gradient backpropagation efficient regardless of the structure, enabling us to augment deep neural networks with generic and sparse structured hidden layers. Experiments in dependency parsing and natural language inference reveal competitive accuracy, improved interpretability, and the ability to capture natural language ambiguities, which is attractive for pipeline systems.

View on arXiv
Comments on this paper