Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1702.08608
Cited By
Towards A Rigorous Science of Interpretable Machine Learning
28 February 2017
Finale Doshi-Velez
Been Kim
XAI
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards A Rigorous Science of Interpretable Machine Learning"
50 / 465 papers shown
Title
Neural Prototype Trees for Interpretable Fine-grained Image Recognition
Meike Nauta
Ron van Bree
C. Seifert
80
262
0
03 Dec 2020
Interpretability and Explainability: A Machine Learning Zoo Mini-tour
Ricards Marcinkevics
Julia E. Vogt
XAI
25
119
0
03 Dec 2020
Cross-Loss Influence Functions to Explain Deep Network Representations
Andrew Silva
Rohit Chopra
Matthew C. Gombolay
TDI
21
15
0
03 Dec 2020
Quantifying Explainers of Graph Neural Networks in Computational Pathology
Guillaume Jaume
Pushpak Pati
Behzad Bozorgtabar
Antonio Foncubierta-Rodríguez
Florinda Feroce
A. Anniciello
T. Rau
Jean-Philippe Thiran
M. Gabrani
O. Goksel
FAtt
26
76
0
25 Nov 2020
Robust and Stable Black Box Explanations
Himabindu Lakkaraju
Nino Arsov
Osbert Bastani
AAML
FAtt
24
84
0
12 Nov 2020
Enforcing Interpretability and its Statistical Impacts: Trade-offs between Accuracy and Interpretability
Gintare Karolina Dziugaite
Shai Ben-David
Daniel M. Roy
FaML
17
38
0
26 Oct 2020
Exemplary Natural Images Explain CNN Activations Better than State-of-the-Art Feature Visualization
Judy Borowski
Roland S. Zimmermann
Judith Schepers
Robert Geirhos
Thomas S. A. Wallis
Matthias Bethge
Wieland Brendel
FAtt
36
7
0
23 Oct 2020
A Perspective on Machine Learning Methods in Turbulence Modelling
Andrea Beck
Marius Kurz
AI4CE
47
101
0
23 Oct 2020
A Survey on Deep Learning and Explainability for Automatic Report Generation from Medical Images
Pablo Messina
Pablo Pino
Denis Parra
Alvaro Soto
Cecilia Besa
S. Uribe
Marcelo andía
C. Tejos
Claudia Prieto
Daniel Capurro
MedIm
36
62
0
20 Oct 2020
Interpretable Machine Learning -- A Brief History, State-of-the-Art and Challenges
Christoph Molnar
Giuseppe Casalicchio
B. Bischl
AI4TS
AI4CE
20
397
0
19 Oct 2020
Deciding Fast and Slow: The Role of Cognitive Biases in AI-assisted Decision-making
Charvi Rastogi
Yunfeng Zhang
Dennis L. Wei
Kush R. Varshney
Amit Dhurandhar
Richard J. Tomsett
HAI
32
108
0
15 Oct 2020
PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks
Minh Nhat Vu
My T. Thai
BDL
16
327
0
12 Oct 2020
A Series of Unfortunate Counterfactual Events: the Role of Time in Counterfactual Explanations
Andrea Ferrario
M. Loi
19
5
0
09 Oct 2020
PRover: Proof Generation for Interpretable Reasoning over Rules
Swarnadeep Saha
Sayan Ghosh
Shashank Srivastava
Joey Tianyi Zhou
ReLM
LRM
23
77
0
06 Oct 2020
Interpretable Machine Learning for COVID-19: An Empirical Study on Severity Prediction Task
Han-Ching Wu
Wenjie Ruan
Jiangtao Wang
Dingchang Zheng
Bei Liu
...
Xiangfei Chai
Jian Chen
Kunwei Li
Shaolin Li
A. Helal
32
25
0
30 Sep 2020
Local Post-Hoc Explanations for Predictive Process Monitoring in Manufacturing
Nijat Mehdiyev
Peter Fettke
6
11
0
22 Sep 2020
Contextual Semantic Interpretability
Diego Marcos
Ruth C. Fong
Sylvain Lobry
Rémi Flamary
Nicolas Courty
D. Tuia
SSL
12
27
0
18 Sep 2020
Beyond Individualized Recourse: Interpretable and Interactive Summaries of Actionable Recourses
Kaivalya Rawal
Himabindu Lakkaraju
27
11
0
15 Sep 2020
A Game-Based Approach for Helping Designers Learn Machine Learning Concepts
Chelsea M. Myers
Jiachi Xie
Jichen Zhu
11
4
0
11 Sep 2020
The Intriguing Relation Between Counterfactual Explanations and Adversarial Examples
Timo Freiesleben
GAN
35
62
0
11 Sep 2020
Play MNIST For Me! User Studies on the Effects of Post-Hoc, Example-Based Explanations & Error Rates on Debugging a Deep Learning, Black-Box Classifier
Courtney Ford
Eoin M. Kenny
Mark T. Keane
23
6
0
10 Sep 2020
Explainable Artificial Intelligence for Process Mining: A General Overview and Application of a Novel Local Explanation Approach for Predictive Process Monitoring
Nijat Mehdiyev
Peter Fettke
AI4TS
25
55
0
04 Sep 2020
Query Understanding via Intent Description Generation
Ruqing Zhang
Jiafeng Guo
Yixing Fan
Yanyan Lan
Xueqi Cheng
24
17
0
25 Aug 2020
Quantum Language Model with Entanglement Embedding for Question Answering
Yiwei Chen
Yu Pan
D. Dong
36
31
0
23 Aug 2020
The Role of Domain Expertise in User Trust and the Impact of First Impressions with Intelligent Systems
Mahsan Nourani
J. King
Eric D. Ragan
17
98
0
20 Aug 2020
Explainable Predictive Process Monitoring
Musabir Musabayli
F. Maggi
Williams Rizzi
Josep Carmona
Chiara Di Francescomarino
14
60
0
04 Aug 2020
Evaluating the performance of the LIME and Grad-CAM explanation methods on a LEGO multi-label image classification task
David Cian
J. C. V. Gemert
A. Lengyel
FAtt
24
22
0
04 Aug 2020
Interpretable Anomaly Detection with DIFFI: Depth-based Isolation Forest Feature Importance
Mattia Carletti
M. Terzi
Gian Antonio Susto
36
42
0
21 Jul 2020
Sequential Explanations with Mental Model-Based Policies
A. Yeung
Shalmali Joshi
Joseph Jay Williams
Frank Rudzicz
FAtt
LRM
31
15
0
17 Jul 2020
Learning Reasoning Strategies in End-to-End Differentiable Proving
Pasquale Minervini
Sebastian Riedel
Pontus Stenetorp
Edward Grefenstette
Tim Rocktaschel
LRM
45
96
0
13 Jul 2020
Algorithmic Fairness in Education
René F. Kizilcec
Hansol Lee
FaML
38
119
0
10 Jul 2020
General Pitfalls of Model-Agnostic Interpretation Methods for Machine Learning Models
Christoph Molnar
Gunnar Konig
J. Herbinger
Timo Freiesleben
Susanne Dandl
Christian A. Scholbeck
Giuseppe Casalicchio
Moritz Grosse-Wentrup
B. Bischl
FAtt
AI4CE
26
135
0
08 Jul 2020
Drug discovery with explainable artificial intelligence
José Jiménez-Luna
F. Grisoni
G. Schneider
30
625
0
01 Jul 2020
BERTology Meets Biology: Interpreting Attention in Protein Language Models
Jesse Vig
Ali Madani
L. Varshney
Caiming Xiong
R. Socher
Nazneen Rajani
29
288
0
26 Jun 2020
DeltaGrad: Rapid retraining of machine learning models
Yinjun Wu
Yan Sun
S. Davidson
MU
25
195
0
26 Jun 2020
Interpretable Deep Models for Cardiac Resynchronisation Therapy Response Prediction
Esther Puyol-Antón
Cheng Chen
J. Clough
B. Ruijsink
B. Sidhu
...
M. Elliott
Vishal S. Mehta
Daniel Rueckert
C. Rinaldi
A. King
19
32
0
24 Jun 2020
Fair Performance Metric Elicitation
G. Hiranandani
Harikrishna Narasimhan
Oluwasanmi Koyejo
32
18
0
23 Jun 2020
Does Explainable Artificial Intelligence Improve Human Decision-Making?
Y. Alufaisan
L. Marusich
J. Bakdash
Yan Zhou
Murat Kantarcioglu
XAI
22
93
0
19 Jun 2020
Detecting unusual input to neural networks
Jörg Martin
Clemens Elster
AAML
14
7
0
15 Jun 2020
Getting a CLUE: A Method for Explaining Uncertainty Estimates
Javier Antorán
Umang Bhatt
T. Adel
Adrian Weller
José Miguel Hernández-Lobato
UQCV
BDL
40
111
0
11 Jun 2020
How Interpretable and Trustworthy are GAMs?
C. Chang
S. Tan
Benjamin J. Lengerich
Anna Goldenberg
R. Caruana
FAtt
14
77
0
11 Jun 2020
Interpretable Deep Graph Generation with Node-Edge Co-Disentanglement
Xiaojie Guo
Liang Zhao
Zhao Qin
Lingfei Wu
Amarda Shehu
Yanfang Ye
CoGe
DRL
32
46
0
09 Jun 2020
XGNN: Towards Model-Level Explanations of Graph Neural Networks
Haonan Yuan
Jiliang Tang
Xia Hu
Shuiwang Ji
28
389
0
03 Jun 2020
A Performance-Explainability Framework to Benchmark Machine Learning Methods: Application to Multivariate Time Series Classifiers
Kevin Fauvel
Véronique Masson
Elisa Fromont
AI4TS
44
17
0
29 May 2020
CausaLM: Causal Model Explanation Through Counterfactual Language Models
Amir Feder
Nadav Oved
Uri Shalit
Roi Reichart
CML
LRM
36
156
0
27 May 2020
Misplaced Trust: Measuring the Interference of Machine Learning in Human Decision-Making
Harini Suresh
Natalie Lao
Ilaria Liccardi
8
49
0
22 May 2020
Local and Global Explanations of Agent Behavior: Integrating Strategy Summaries with Saliency Maps
Tobias Huber
Katharina Weitz
Elisabeth André
Ofra Amir
FAtt
21
63
0
18 May 2020
Clinical Predictive Models for COVID-19: Systematic Study
Patrick Schwab
August DuMont Schütte
Benedikt Dietz
Stefan Bauer
OOD
ELM
42
35
0
17 May 2020
Explaining Black Box Predictions and Unveiling Data Artifacts through Influence Functions
Xiaochuang Han
Byron C. Wallace
Yulia Tsvetkov
MILM
FAtt
AAML
TDI
23
164
0
14 May 2020
Designing Accurate Emulators for Scientific Processes using Calibration-Driven Deep Models
Jayaraman J. Thiagarajan
Bindya Venkatesh
Rushil Anirudh
P. Bremer
J. Gaffney
G. Anderson
B. Spears
8
21
0
05 May 2020
Previous
1
2
3
...
10
6
7
8
9
Next