ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.10513
6
11

Local Post-Hoc Explanations for Predictive Process Monitoring in Manufacturing

22 September 2020
Nijat Mehdiyev
Peter Fettke
ArXivPDFHTML
Abstract

This study proposes an innovative explainable predictive quality analytics solution to facilitate data-driven decision-making for process planning in manufacturing by combining process mining, machine learning, and explainable artificial intelligence (XAI) methods. For this purpose, after integrating the top-floor and shop-floor data obtained from various enterprise information systems, a deep learning model was applied to predict the process outcomes. Since this study aims to operationalize the delivered predictive insights by embedding them into decision-making processes, it is essential to generate relevant explanations for domain experts. To this end, two complementary local post-hoc explanation approaches, Shapley values and Individual Conditional Expectation (ICE) plots are adopted, which are expected to enhance the decision-making capabilities by enabling experts to examine explanations from different perspectives. After assessing the predictive strength of the applied deep neural network with relevant binary classification evaluation measures, a discussion of the generated explanations is provided.

View on arXiv
Comments on this paper