ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.08608
  4. Cited By
Towards A Rigorous Science of Interpretable Machine Learning

Towards A Rigorous Science of Interpretable Machine Learning

28 February 2017
Finale Doshi-Velez
Been Kim
    XAI
    FaML
ArXivPDFHTML

Papers citing "Towards A Rigorous Science of Interpretable Machine Learning"

32 / 482 papers shown
Title
Model Agnostic Supervised Local Explanations
Model Agnostic Supervised Local Explanations
Gregory Plumb
Denali Molitor
Ameet Talwalkar
FAtt
LRM
MILM
14
196
0
09 Jul 2018
xGEMs: Generating Examplars to Explain Black-Box Models
xGEMs: Generating Examplars to Explain Black-Box Models
Shalmali Joshi
Oluwasanmi Koyejo
Been Kim
Joydeep Ghosh
MLAU
25
40
0
22 Jun 2018
Learning Qualitatively Diverse and Interpretable Rules for
  Classification
Learning Qualitatively Diverse and Interpretable Rules for Classification
A. Ross
Weiwei Pan
Finale Doshi-Velez
16
13
0
22 Jun 2018
Interpretable to Whom? A Role-based Model for Analyzing Interpretable
  Machine Learning Systems
Interpretable to Whom? A Role-based Model for Analyzing Interpretable Machine Learning Systems
Richard J. Tomsett
Dave Braines
Daniel Harborne
Alun D. Preece
Supriyo Chakraborty
FaML
26
164
0
20 Jun 2018
Towards Robust Interpretability with Self-Explaining Neural Networks
Towards Robust Interpretability with Self-Explaining Neural Networks
David Alvarez-Melis
Tommi Jaakkola
MILM
XAI
29
933
0
20 Jun 2018
Contrastive Explanations with Local Foil Trees
Contrastive Explanations with Local Foil Trees
J. V. D. Waa
M. Robeer
J. Diggelen
Matthieu J. S. Brinkhuis
Mark Antonius Neerincx
FAtt
19
82
0
19 Jun 2018
Instance-Level Explanations for Fraud Detection: A Case Study
Instance-Level Explanations for Fraud Detection: A Case Study
Dennis Collaris
L. M. Vink
J. V. Wijk
29
31
0
19 Jun 2018
Learning Kolmogorov Models for Binary Random Variables
Learning Kolmogorov Models for Binary Random Variables
H. Ghauch
Mikael Skoglund
H. S. Ghadikolaei
Carlo Fischione
Ali H. Sayed
16
7
0
06 Jun 2018
Performance Metric Elicitation from Pairwise Classifier Comparisons
Performance Metric Elicitation from Pairwise Classifier Comparisons
G. Hiranandani
Shant Boodaghians
R. Mehta
Oluwasanmi Koyejo
19
14
0
05 Jun 2018
Explaining Explanations: An Overview of Interpretability of Machine
  Learning
Explaining Explanations: An Overview of Interpretability of Machine Learning
Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
XAI
40
1,840
0
31 May 2018
Human-in-the-Loop Interpretability Prior
Human-in-the-Loop Interpretability Prior
Isaac Lage
A. Ross
Been Kim
S. Gershman
Finale Doshi-Velez
32
120
0
29 May 2018
Local Rule-Based Explanations of Black Box Decision Systems
Local Rule-Based Explanations of Black Box Decision Systems
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
D. Pedreschi
Franco Turini
F. Giannotti
31
435
0
28 May 2018
Disentangling Controllable and Uncontrollable Factors of Variation by
  Interacting with the World
Disentangling Controllable and Uncontrollable Factors of Variation by Interacting with the World
Yoshihide Sawada
DRL
21
10
0
19 Apr 2018
Entanglement-guided architectures of machine learning by quantum tensor
  network
Entanglement-guided architectures of machine learning by quantum tensor network
Yuhan Liu
Xiao Zhang
M. Lewenstein
Shi-Ju Ran
23
32
0
24 Mar 2018
Explanation Methods in Deep Learning: Users, Values, Concerns and
  Challenges
Explanation Methods in Deep Learning: Users, Values, Concerns and Challenges
Gabrielle Ras
Marcel van Gerven
W. Haselager
XAI
17
217
0
20 Mar 2018
Constant-Time Predictive Distributions for Gaussian Processes
Constant-Time Predictive Distributions for Gaussian Processes
Geoff Pleiss
Jacob R. Gardner
Kilian Q. Weinberger
A. Wilson
25
94
0
16 Mar 2018
Structural Agnostic Modeling: Adversarial Learning of Causal Graphs
Structural Agnostic Modeling: Adversarial Learning of Causal Graphs
Diviyan Kalainathan
Olivier Goudet
Isabelle M Guyon
David Lopez-Paz
Michèle Sebag
CML
24
93
0
13 Mar 2018
Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust
  Deep Learning
Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning
Nicolas Papernot
Patrick McDaniel
OOD
AAML
8
502
0
13 Mar 2018
Adversarial Malware Binaries: Evading Deep Learning for Malware
  Detection in Executables
Adversarial Malware Binaries: Evading Deep Learning for Malware Detection in Executables
Bojan Kolosnjaji
Ambra Demontis
Battista Biggio
Davide Maiorca
Giorgio Giacinto
Claudia Eckert
Fabio Roli
AAML
19
316
0
12 Mar 2018
Explaining Black-box Android Malware Detection
Explaining Black-box Android Malware Detection
Marco Melis
Davide Maiorca
Battista Biggio
Giorgio Giacinto
Fabio Roli
AAML
FAtt
9
43
0
09 Mar 2018
The Challenge of Crafting Intelligible Intelligence
The Challenge of Crafting Intelligible Intelligence
Daniel S. Weld
Gagan Bansal
26
241
0
09 Mar 2018
Teaching Categories to Human Learners with Visual Explanations
Teaching Categories to Human Learners with Visual Explanations
Oisin Mac Aodha
Shihan Su
Yuxin Chen
Pietro Perona
Yisong Yue
21
70
0
20 Feb 2018
How do Humans Understand Explanations from Machine Learning Systems? An
  Evaluation of the Human-Interpretability of Explanation
How do Humans Understand Explanations from Machine Learning Systems? An Evaluation of the Human-Interpretability of Explanation
Menaka Narayanan
Emily Chen
Jeffrey He
Been Kim
S. Gershman
Finale Doshi-Velez
FAtt
XAI
33
241
0
02 Feb 2018
Inverse Classification for Comparison-based Interpretability in Machine
  Learning
Inverse Classification for Comparison-based Interpretability in Machine Learning
Thibault Laugel
Marie-Jeanne Lesot
Christophe Marsala
X. Renard
Marcin Detyniecki
18
100
0
22 Dec 2017
Interpretability Beyond Feature Attribution: Quantitative Testing with
  Concept Activation Vectors (TCAV)
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
77
1,791
0
30 Nov 2017
MARGIN: Uncovering Deep Neural Networks using Graph Signal Analysis
MARGIN: Uncovering Deep Neural Networks using Graph Signal Analysis
Rushil Anirudh
Jayaraman J. Thiagarajan
R. Sridhar
T. Bremer
FAtt
AAML
23
12
0
15 Nov 2017
A Formal Framework to Characterize Interpretability of Procedures
A Formal Framework to Characterize Interpretability of Procedures
Amit Dhurandhar
Vijay Iyengar
Ronny Luss
Karthikeyan Shanmugam
15
19
0
12 Jul 2017
SmoothGrad: removing noise by adding noise
SmoothGrad: removing noise by adding noise
D. Smilkov
Nikhil Thorat
Been Kim
F. Viégas
Martin Wattenberg
FAtt
ODL
40
2,204
0
12 Jun 2017
Contextual Explanation Networks
Contextual Explanation Networks
Maruan Al-Shedivat
Kumar Avinava Dubey
Eric P. Xing
CML
35
82
0
29 May 2017
Interpreting Blackbox Models via Model Extraction
Interpreting Blackbox Models via Model Extraction
Osbert Bastani
Carolyn Kim
Hamsa Bastani
FAtt
24
170
0
23 May 2017
Right for the Right Reasons: Training Differentiable Models by
  Constraining their Explanations
Right for the Right Reasons: Training Differentiable Models by Constraining their Explanations
A. Ross
M. C. Hughes
Finale Doshi-Velez
FAtt
41
582
0
10 Mar 2017
Deep Reinforcement Learning: An Overview
Deep Reinforcement Learning: An Overview
Yuxi Li
OffRL
VLM
104
1,502
0
25 Jan 2017
Previous
123...1089