Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1702.03849
Cited By
Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis
13 February 2017
Maxim Raginsky
Alexander Rakhlin
Matus Telgarsky
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis"
50 / 114 papers shown
Title
Operator-Level Quantum Acceleration of Non-Logconcave Sampling
Jiaqi Leng
Zhiyan Ding
Zherui Chen
Lin Lin
62
0
0
08 May 2025
Langevin Multiplicative Weights Update with Applications in Polynomial Portfolio Management
Yi-Hu Feng
Tianlin Li
Tian Xie
62
0
0
26 Feb 2025
Understanding the Generalization Error of Markov algorithms through Poissonization
Benjamin Dupuis
Maxime Haddouche
George Deligiannidis
Umut Simsekli
47
0
0
11 Feb 2025
Random Reshuffling for Stochastic Gradient Langevin Dynamics
Luke Shaw
Peter A. Whalley
93
3
0
28 Jan 2025
Provable Accuracy Bounds for Hybrid Dynamical Optimization and Sampling
Matthew Burns
Qingyuan Hou
Michael Huang
137
1
0
08 Oct 2024
Uniform Generalization Bounds on Data-Dependent Hypothesis Sets via PAC-Bayesian Theory on Random Sets
Benjamin Dupuis
Paul Viallard
George Deligiannidis
Umut Simsekli
42
2
0
26 Apr 2024
Information-Theoretic Generalization Bounds for Deep Neural Networks
Haiyun He
Christina Lee Yu
35
4
0
04 Apr 2024
Privacy of SGD under Gaussian or Heavy-Tailed Noise: Guarantees without Gradient Clipping
Umut Simsekli
Mert Gurbuzbalaban
S. Yıldırım
Lingjiong Zhu
38
2
0
04 Mar 2024
Stable Neural Stochastic Differential Equations in Analyzing Irregular Time Series Data
YongKyung Oh
Dongyoung Lim
Sungil Kim
AI4TS
43
12
0
22 Feb 2024
The Expected Loss of Preconditioned Langevin Dynamics Reveals the Hessian Rank
Amitay Bar
Rotem Mulayoff
T. Michaeli
Ronen Talmon
64
0
0
21 Feb 2024
Leveraging PAC-Bayes Theory and Gibbs Distributions for Generalization Bounds with Complexity Measures
Paul Viallard
Rémi Emonet
Amaury Habrard
Emilie Morvant
Valentina Zantedeschi
39
3
0
19 Feb 2024
Convex SGD: Generalization Without Early Stopping
Julien Hendrickx
A. Olshevsky
MLT
LRM
25
1
0
08 Jan 2024
Generalization Bounds for Label Noise Stochastic Gradient Descent
Jung Eun Huh
Patrick Rebeschini
13
1
0
01 Nov 2023
Gibbs-Based Information Criteria and the Over-Parameterized Regime
Haobo Chen
Yuheng Bu
Greg Wornell
27
1
0
08 Jun 2023
Deep Stochastic Mechanics
Elena Orlova
Aleksei Ustimenko
Ruoxi Jiang
Peter Y. Lu
Rebecca Willett
DiffM
43
0
0
31 May 2023
Provably Fast Finite Particle Variants of SVGD via Virtual Particle Stochastic Approximation
Aniket Das
Dheeraj M. Nagaraj
35
7
0
27 May 2023
Uniform-in-Time Wasserstein Stability Bounds for (Noisy) Stochastic Gradient Descent
Lingjiong Zhu
Mert Gurbuzbalaban
Anant Raj
Umut Simsekli
31
6
0
20 May 2023
Efficient Sampling of Stochastic Differential Equations with Positive Semi-Definite Models
Anant Raj
Umut Simsekli
Alessandro Rudi
DiffM
31
1
0
30 Mar 2023
Interacting Particle Langevin Algorithm for Maximum Marginal Likelihood Estimation
Ö. Deniz Akyildiz
F. R. Crucinio
Mark Girolami
Tim Johnston
Sotirios Sabanis
32
11
0
23 Mar 2023
Non-asymptotic analysis of Langevin-type Monte Carlo algorithms
Shogo H. Nakakita
19
0
0
22 Mar 2023
ELF: Federated Langevin Algorithms with Primal, Dual and Bidirectional Compression
Avetik G. Karagulyan
Peter Richtárik
FedML
31
6
0
08 Mar 2023
Revisiting the Noise Model of Stochastic Gradient Descent
Barak Battash
Ofir Lindenbaum
27
9
0
05 Mar 2023
Tighter Information-Theoretic Generalization Bounds from Supersamples
Ziqiao Wang
Yongyi Mao
32
17
0
05 Feb 2023
Non-convex sampling for a mixture of locally smooth potentials
D. Nguyen
33
0
0
31 Jan 2023
STEERING: Stein Information Directed Exploration for Model-Based Reinforcement Learning
Souradip Chakraborty
Amrit Singh Bedi
Alec Koppel
Mengdi Wang
Furong Huang
Dinesh Manocha
24
7
0
28 Jan 2023
Algorithmic Stability of Heavy-Tailed SGD with General Loss Functions
Anant Raj
Lingjiong Zhu
Mert Gurbuzbalaban
Umut Simsekli
28
15
0
27 Jan 2023
Kinetic Langevin MCMC Sampling Without Gradient Lipschitz Continuity -- the Strongly Convex Case
Tim Johnston
Iosif Lytras
Sotirios Sabanis
38
8
0
19 Jan 2023
Stochastic Langevin Monte Carlo for (weakly) log-concave posterior distributions
Marelys Crespo Navas
S. Gadat
X. Gendre
26
0
0
08 Jan 2023
Fast Replica Exchange Stochastic Gradient Langevin Dynamics
Guanxun Li
Guang Lin
Zecheng Zhang
Quan Zhou
138
4
0
05 Jan 2023
Non-reversible Parallel Tempering for Deep Posterior Approximation
Wei Deng
Qian Zhang
Qi Feng
F. Liang
Guang Lin
20
4
0
20 Nov 2022
Two Facets of SDE Under an Information-Theoretic Lens: Generalization of SGD via Training Trajectories and via Terminal States
Ziqiao Wang
Yongyi Mao
27
10
0
19 Nov 2022
Data-Adaptive Discriminative Feature Localization with Statistically Guaranteed Interpretation
Ben Dai
Xiaotong Shen
Lingzhi Chen
Chunlin Li
Wei Pan
FAtt
18
1
0
18 Nov 2022
A Dynamical System View of Langevin-Based Non-Convex Sampling
Mohammad Reza Karimi
Ya-Ping Hsieh
Andreas Krause
40
4
0
25 Oct 2022
Global Convergence of SGD On Two Layer Neural Nets
Pulkit Gopalani
Anirbit Mukherjee
26
5
0
20 Oct 2022
Resolving the Mixing Time of the Langevin Algorithm to its Stationary Distribution for Log-Concave Sampling
Jason M. Altschuler
Kunal Talwar
35
24
0
16 Oct 2022
Over-the-Air Split Machine Learning in Wireless MIMO Networks
YuZhi Yang
Zhaoyang Zhang
Yuqing Tian
Zhaohui Yang
Chongwen Huang
C. Zhong
Kai‐Kit Wong
26
23
0
07 Oct 2022
Tradeoffs between convergence rate and noise amplification for momentum-based accelerated optimization algorithms
Hesameddin Mohammadi
Meisam Razaviyayn
Mihailo R. Jovanović
15
7
0
24 Sep 2022
Generalisation under gradient descent via deterministic PAC-Bayes
Eugenio Clerico
Tyler Farghly
George Deligiannidis
Benjamin Guedj
Arnaud Doucet
31
4
0
06 Sep 2022
A sharp uniform-in-time error estimate for Stochastic Gradient Langevin Dynamics
Lei Li
Yuliang Wang
39
11
0
19 Jul 2022
Score-Guided Intermediate Layer Optimization: Fast Langevin Mixing for Inverse Problems
Giannis Daras
Y. Dagan
A. Dimakis
C. Daskalakis
BDL
31
15
0
18 Jun 2022
Benefits of Additive Noise in Composing Classes with Bounded Capacity
A. F. Pour
H. Ashtiani
30
3
0
14 Jun 2022
High-dimensional limit theorems for SGD: Effective dynamics and critical scaling
Gerard Ben Arous
Reza Gheissari
Aukosh Jagannath
56
58
0
08 Jun 2022
Utilising the CLT Structure in Stochastic Gradient based Sampling : Improved Analysis and Faster Algorithms
Aniket Das
Dheeraj M. Nagaraj
Anant Raj
54
6
0
08 Jun 2022
Convergence of Stein Variational Gradient Descent under a Weaker Smoothness Condition
Lukang Sun
Avetik G. Karagulyan
Peter Richtárik
26
19
0
01 Jun 2022
Uniform Generalization Bound on Time and Inverse Temperature for Gradient Descent Algorithm and its Application to Analysis of Simulated Annealing
Keisuke Suzuki
AI4CE
30
0
0
25 May 2022
Weak Convergence of Approximate reflection coupling and its Application to Non-convex Optimization
Keisuke Suzuki
25
5
0
24 May 2022
Decentralized Stochastic Optimization with Inherent Privacy Protection
Yongqiang Wang
H. Vincent Poor
24
37
0
08 May 2022
An Empirical Study of the Occurrence of Heavy-Tails in Training a ReLU Gate
Sayar Karmakar
Anirbit Mukherjee
18
0
0
26 Apr 2022
Sharper Utility Bounds for Differentially Private Models
Yilin Kang
Yong Liu
Jian Li
Weiping Wang
FedML
29
3
0
22 Apr 2022
A Proximal Algorithm for Sampling
Jiaming Liang
Yongxin Chen
22
17
0
28 Feb 2022
1
2
3
Next