ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.12407
14
0

Non-asymptotic analysis of Langevin-type Monte Carlo algorithms

22 March 2023
Shogo H. Nakakita
ArXivPDFHTML
Abstract

We study Langevin-type algorithms for sampling from Gibbs distributions such that the potentials are dissipative and their weak gradients have finite moduli of continuity not necessarily convergent to zero. Our main result is a non-asymptotic upper bound of the 2-Wasserstein distance between a Gibbs distribution and the law of general Langevin-type algorithms based on the Liptser--Shiryaev theory and Poincar\'{e} inequalities. We apply this bound to show that the Langevin Monte Carlo algorithm can approximate Gibbs distributions with arbitrary accuracy if the potentials are dissipative and their gradients are uniformly continuous. We also propose Langevin-type algorithms with spherical smoothing for distributions whose potentials are not convex or continuously differentiable.

View on arXiv
Comments on this paper