Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1702.03849
Cited By
Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis
13 February 2017
Maxim Raginsky
Alexander Rakhlin
Matus Telgarsky
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis"
50 / 114 papers shown
Title
Interacting Contour Stochastic Gradient Langevin Dynamics
Wei Deng
Siqi Liang
Botao Hao
Guang Lin
F. Liang
BDL
26
10
0
20 Feb 2022
Towards a Theory of Non-Log-Concave Sampling: First-Order Stationarity Guarantees for Langevin Monte Carlo
Krishnakumar Balasubramanian
Sinho Chewi
Murat A. Erdogdu
Adil Salim
Matthew Shunshi Zhang
40
60
0
10 Feb 2022
Demystify Optimization and Generalization of Over-parameterized PAC-Bayesian Learning
Wei Huang
Chunrui Liu
Yilan Chen
Tianyu Liu
R. Xu
BDL
MLT
19
2
0
04 Feb 2022
On Uniform Boundedness Properties of SGD and its Momentum Variants
Xiaoyu Wang
M. Johansson
23
3
0
25 Jan 2022
Stability Based Generalization Bounds for Exponential Family Langevin Dynamics
A. Banerjee
Tiancong Chen
Xinyan Li
Yingxue Zhou
34
8
0
09 Jan 2022
Global convergence of optimized adaptive importance samplers
Ömer Deniz Akyildiz
30
7
0
02 Jan 2022
On Convergence of Federated Averaging Langevin Dynamics
Wei Deng
Qian Zhang
Yi Ma
Zhao-quan Song
Guang Lin
FedML
27
16
0
09 Dec 2021
Exponential escape efficiency of SGD from sharp minima in non-stationary regime
Hikaru Ibayashi
Masaaki Imaizumi
26
4
0
07 Nov 2021
Deep Bayesian inference for seismic imaging with tasks
Ali Siahkoohi
G. Rizzuti
Felix J. Herrmann
BDL
UQCV
38
21
0
10 Oct 2021
Mixing between the Cross Entropy and the Expectation Loss Terms
Barak Battash
Lior Wolf
Tamir Hazan
UQCV
20
0
0
12 Sep 2021
Uniform minorization condition and convergence bounds for discretizations of kinetic Langevin dynamics
Alain Durmus
Aurélien Enfroy
Eric Moulines
G. Stoltz
27
17
0
30 Jul 2021
Characterizing the Generalization Error of Gibbs Algorithm with Symmetrized KL information
Gholamali Aminian
Yuheng Bu
Laura Toni
M. Rodrigues
G. Wornell
30
4
0
28 Jul 2021
Small random initialization is akin to spectral learning: Optimization and generalization guarantees for overparameterized low-rank matrix reconstruction
Dominik Stöger
Mahdi Soltanolkotabi
ODL
42
75
0
28 Jun 2021
Schr{ö}dinger-F{ö}llmer Sampler: Sampling without Ergodicity
Jian Huang
Yuling Jiao
Lican Kang
Xu Liao
Jin Liu
Yanyan Liu
35
27
0
21 Jun 2021
Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks
David Alvarez-Melis
Yair Schiff
Youssef Mroueh
40
52
0
01 Jun 2021
A Unifying and Canonical Description of Measure-Preserving Diffusions
Alessandro Barp
So Takao
M. Betancourt
Alexis Arnaudon
Mark Girolami
22
17
0
06 May 2021
Manipulating SGD with Data Ordering Attacks
Ilia Shumailov
Zakhar Shumaylov
Dmitry Kazhdan
Yiren Zhao
Nicolas Papernot
Murat A. Erdogdu
Ross J. Anderson
AAML
112
90
0
19 Apr 2021
Significance tests of feature relevance for a black-box learner
Ben Dai
Xiaotong Shen
Wei Pan
24
25
0
02 Mar 2021
Stochastic Gradient Langevin Dynamics with Variance Reduction
Zhishen Huang
Stephen Becker
13
7
0
12 Feb 2021
Transfer Meta-Learning: Information-Theoretic Bounds and Information Meta-Risk Minimization
Sharu Theresa Jose
Osvaldo Simeone
G. Durisi
24
17
0
04 Nov 2020
Random Coordinate Underdamped Langevin Monte Carlo
Zhiyan Ding
Qin Li
Jianfeng Lu
Stephen J. Wright
BDL
29
13
0
22 Oct 2020
A Contour Stochastic Gradient Langevin Dynamics Algorithm for Simulations of Multi-modal Distributions
Wei Deng
Guang Lin
F. Liang
BDL
42
27
0
19 Oct 2020
Accelerating Convergence of Replica Exchange Stochastic Gradient MCMC via Variance Reduction
Wei Deng
Qi Feng
G. Karagiannis
Guang Lin
F. Liang
33
8
0
02 Oct 2020
Convergence of Langevin Monte Carlo in Chi-Squared and Renyi Divergence
Murat A. Erdogdu
Rasa Hosseinzadeh
Matthew Shunshi Zhang
86
41
0
22 Jul 2020
On stochastic mirror descent with interacting particles: convergence properties and variance reduction
Anastasia Borovykh
N. Kantas
P. Parpas
G. Pavliotis
28
12
0
15 Jul 2020
Taming neural networks with TUSLA: Non-convex learning via adaptive stochastic gradient Langevin algorithms
A. Lovas
Iosif Lytras
Miklós Rásonyi
Sotirios Sabanis
15
25
0
25 Jun 2020
PAC-Bayes Analysis Beyond the Usual Bounds
Omar Rivasplata
Ilja Kuzborskij
Csaba Szepesvári
John Shawe-Taylor
33
80
0
23 Jun 2020
Uncertainty in Gradient Boosting via Ensembles
Aleksei Ustimenko
Liudmila Prokhorenkova
A. Malinin
UQCV
28
94
0
18 Jun 2020
Hausdorff Dimension, Heavy Tails, and Generalization in Neural Networks
Umut Simsekli
Ozan Sener
George Deligiannidis
Murat A. Erdogdu
44
55
0
16 Jun 2020
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Jeff Z. HaoChen
Colin Wei
J. Lee
Tengyu Ma
29
93
0
15 Jun 2020
An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias
Lu Yu
Krishnakumar Balasubramanian
S. Volgushev
Murat A. Erdogdu
35
50
0
14 Jun 2020
On the Convergence of Langevin Monte Carlo: The Interplay between Tail Growth and Smoothness
Murat A. Erdogdu
Rasa Hosseinzadeh
6
74
0
27 May 2020
Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo under local conditions for nonconvex optimization
Ömer Deniz Akyildiz
Sotirios Sabanis
43
17
0
13 Feb 2020
Wasserstein Control of Mirror Langevin Monte Carlo
Kelvin Shuangjian Zhang
Gabriel Peyré
M. Fadili
Marcelo Pereyra
19
65
0
11 Feb 2020
Replica Exchange for Non-Convex Optimization
Jing-rong Dong
Xin T. Tong
14
21
0
23 Jan 2020
Information-Theoretic Generalization Bounds for SGLD via Data-Dependent Estimates
Jeffrey Negrea
Mahdi Haghifam
Gintare Karolina Dziugaite
Ashish Khisti
Daniel M. Roy
FedML
113
147
0
06 Nov 2019
An Adaptive Empirical Bayesian Method for Sparse Deep Learning
Wei Deng
Xiao Zhang
F. Liang
Guang Lin
BDL
18
42
0
23 Oct 2019
Non-Gaussianity of Stochastic Gradient Noise
A. Panigrahi
Raghav Somani
Navin Goyal
Praneeth Netrapalli
15
52
0
21 Oct 2019
Aggregated Gradient Langevin Dynamics
Chao Zhang
Jiahao Xie
Zebang Shen
P. Zhao
Tengfei Zhou
Hui Qian
28
1
0
21 Oct 2019
Stochastic gradient Markov chain Monte Carlo
Christopher Nemeth
Paul Fearnhead
BDL
22
134
0
16 Jul 2019
SNAP: Finding Approximate Second-Order Stationary Solutions Efficiently for Non-convex Linearly Constrained Problems
Songtao Lu
Meisam Razaviyayn
Bo Yang
Kejun Huang
Mingyi Hong
27
11
0
09 Jul 2019
Chaining Meets Chain Rule: Multilevel Entropic Regularization and Training of Neural Nets
Amir-Reza Asadi
Emmanuel Abbe
BDL
AI4CE
34
13
0
26 Jun 2019
Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Learning
Huy N. Chau
M. Rásonyi
25
10
0
25 Mar 2019
Annealing for Distributed Global Optimization
Brian Swenson
S. Kar
H. Vincent Poor
J. M. F. Moura
17
30
0
18 Mar 2019
An Empirical Study of Large-Batch Stochastic Gradient Descent with Structured Covariance Noise
Yeming Wen
Kevin Luk
Maxime Gazeau
Guodong Zhang
Harris Chan
Jimmy Ba
ODL
20
22
0
21 Feb 2019
A Tail-Index Analysis of Stochastic Gradient Noise in Deep Neural Networks
Umut Simsekli
Levent Sagun
Mert Gurbuzbalaban
17
237
0
18 Jan 2019
On stochastic gradient Langevin dynamics with dependent data streams in the logconcave case
M. Barkhagen
N. H. Chau
'. Moulines
Miklós Rásonyi
S. Sabanis
Ying Zhang
21
37
0
06 Dec 2018
Towards Theoretical Understanding of Large Batch Training in Stochastic Gradient Descent
Xiaowu Dai
Yuhua Zhu
25
11
0
03 Dec 2018
Simulated Tempering Langevin Monte Carlo II: An Improved Proof using Soft Markov Chain Decomposition
Rong Ge
Holden Lee
Andrej Risteski
14
27
0
29 Nov 2018
Sampling Can Be Faster Than Optimization
Yian Ma
Yuansi Chen
Chi Jin
Nicolas Flammarion
Michael I. Jordan
11
183
0
20 Nov 2018
Previous
1
2
3
Next