ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.03849
  4. Cited By
Non-convex learning via Stochastic Gradient Langevin Dynamics: a
  nonasymptotic analysis

Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis

13 February 2017
Maxim Raginsky
Alexander Rakhlin
Matus Telgarsky
ArXivPDFHTML

Papers citing "Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis"

50 / 114 papers shown
Title
Interacting Contour Stochastic Gradient Langevin Dynamics
Interacting Contour Stochastic Gradient Langevin Dynamics
Wei Deng
Siqi Liang
Botao Hao
Guang Lin
F. Liang
BDL
26
10
0
20 Feb 2022
Towards a Theory of Non-Log-Concave Sampling: First-Order Stationarity
  Guarantees for Langevin Monte Carlo
Towards a Theory of Non-Log-Concave Sampling: First-Order Stationarity Guarantees for Langevin Monte Carlo
Krishnakumar Balasubramanian
Sinho Chewi
Murat A. Erdogdu
Adil Salim
Matthew Shunshi Zhang
40
60
0
10 Feb 2022
Demystify Optimization and Generalization of Over-parameterized
  PAC-Bayesian Learning
Demystify Optimization and Generalization of Over-parameterized PAC-Bayesian Learning
Wei Huang
Chunrui Liu
Yilan Chen
Tianyu Liu
R. Xu
BDL
MLT
19
2
0
04 Feb 2022
On Uniform Boundedness Properties of SGD and its Momentum Variants
On Uniform Boundedness Properties of SGD and its Momentum Variants
Xiaoyu Wang
M. Johansson
23
3
0
25 Jan 2022
Stability Based Generalization Bounds for Exponential Family Langevin
  Dynamics
Stability Based Generalization Bounds for Exponential Family Langevin Dynamics
A. Banerjee
Tiancong Chen
Xinyan Li
Yingxue Zhou
34
8
0
09 Jan 2022
Global convergence of optimized adaptive importance samplers
Global convergence of optimized adaptive importance samplers
Ömer Deniz Akyildiz
30
7
0
02 Jan 2022
On Convergence of Federated Averaging Langevin Dynamics
On Convergence of Federated Averaging Langevin Dynamics
Wei Deng
Qian Zhang
Yi Ma
Zhao-quan Song
Guang Lin
FedML
27
16
0
09 Dec 2021
Exponential escape efficiency of SGD from sharp minima in non-stationary
  regime
Exponential escape efficiency of SGD from sharp minima in non-stationary regime
Hikaru Ibayashi
Masaaki Imaizumi
26
4
0
07 Nov 2021
Deep Bayesian inference for seismic imaging with tasks
Deep Bayesian inference for seismic imaging with tasks
Ali Siahkoohi
G. Rizzuti
Felix J. Herrmann
BDL
UQCV
38
21
0
10 Oct 2021
Mixing between the Cross Entropy and the Expectation Loss Terms
Mixing between the Cross Entropy and the Expectation Loss Terms
Barak Battash
Lior Wolf
Tamir Hazan
UQCV
20
0
0
12 Sep 2021
Uniform minorization condition and convergence bounds for
  discretizations of kinetic Langevin dynamics
Uniform minorization condition and convergence bounds for discretizations of kinetic Langevin dynamics
Alain Durmus
Aurélien Enfroy
Eric Moulines
G. Stoltz
27
17
0
30 Jul 2021
Characterizing the Generalization Error of Gibbs Algorithm with
  Symmetrized KL information
Characterizing the Generalization Error of Gibbs Algorithm with Symmetrized KL information
Gholamali Aminian
Yuheng Bu
Laura Toni
M. Rodrigues
G. Wornell
30
4
0
28 Jul 2021
Small random initialization is akin to spectral learning: Optimization
  and generalization guarantees for overparameterized low-rank matrix
  reconstruction
Small random initialization is akin to spectral learning: Optimization and generalization guarantees for overparameterized low-rank matrix reconstruction
Dominik Stöger
Mahdi Soltanolkotabi
ODL
42
75
0
28 Jun 2021
Schr{ö}dinger-F{ö}llmer Sampler: Sampling without Ergodicity
Schr{ö}dinger-F{ö}llmer Sampler: Sampling without Ergodicity
Jian Huang
Yuling Jiao
Lican Kang
Xu Liao
Jin Liu
Yanyan Liu
35
27
0
21 Jun 2021
Optimizing Functionals on the Space of Probabilities with Input Convex
  Neural Networks
Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks
David Alvarez-Melis
Yair Schiff
Youssef Mroueh
40
52
0
01 Jun 2021
A Unifying and Canonical Description of Measure-Preserving Diffusions
A Unifying and Canonical Description of Measure-Preserving Diffusions
Alessandro Barp
So Takao
M. Betancourt
Alexis Arnaudon
Mark Girolami
22
17
0
06 May 2021
Manipulating SGD with Data Ordering Attacks
Manipulating SGD with Data Ordering Attacks
Ilia Shumailov
Zakhar Shumaylov
Dmitry Kazhdan
Yiren Zhao
Nicolas Papernot
Murat A. Erdogdu
Ross J. Anderson
AAML
112
90
0
19 Apr 2021
Significance tests of feature relevance for a black-box learner
Significance tests of feature relevance for a black-box learner
Ben Dai
Xiaotong Shen
Wei Pan
24
25
0
02 Mar 2021
Stochastic Gradient Langevin Dynamics with Variance Reduction
Stochastic Gradient Langevin Dynamics with Variance Reduction
Zhishen Huang
Stephen Becker
13
7
0
12 Feb 2021
Transfer Meta-Learning: Information-Theoretic Bounds and Information
  Meta-Risk Minimization
Transfer Meta-Learning: Information-Theoretic Bounds and Information Meta-Risk Minimization
Sharu Theresa Jose
Osvaldo Simeone
G. Durisi
24
17
0
04 Nov 2020
Random Coordinate Underdamped Langevin Monte Carlo
Random Coordinate Underdamped Langevin Monte Carlo
Zhiyan Ding
Qin Li
Jianfeng Lu
Stephen J. Wright
BDL
29
13
0
22 Oct 2020
A Contour Stochastic Gradient Langevin Dynamics Algorithm for
  Simulations of Multi-modal Distributions
A Contour Stochastic Gradient Langevin Dynamics Algorithm for Simulations of Multi-modal Distributions
Wei Deng
Guang Lin
F. Liang
BDL
42
27
0
19 Oct 2020
Accelerating Convergence of Replica Exchange Stochastic Gradient MCMC
  via Variance Reduction
Accelerating Convergence of Replica Exchange Stochastic Gradient MCMC via Variance Reduction
Wei Deng
Qi Feng
G. Karagiannis
Guang Lin
F. Liang
33
8
0
02 Oct 2020
Convergence of Langevin Monte Carlo in Chi-Squared and Renyi Divergence
Convergence of Langevin Monte Carlo in Chi-Squared and Renyi Divergence
Murat A. Erdogdu
Rasa Hosseinzadeh
Matthew Shunshi Zhang
86
41
0
22 Jul 2020
On stochastic mirror descent with interacting particles: convergence
  properties and variance reduction
On stochastic mirror descent with interacting particles: convergence properties and variance reduction
Anastasia Borovykh
N. Kantas
P. Parpas
G. Pavliotis
28
12
0
15 Jul 2020
Taming neural networks with TUSLA: Non-convex learning via adaptive
  stochastic gradient Langevin algorithms
Taming neural networks with TUSLA: Non-convex learning via adaptive stochastic gradient Langevin algorithms
A. Lovas
Iosif Lytras
Miklós Rásonyi
Sotirios Sabanis
15
25
0
25 Jun 2020
PAC-Bayes Analysis Beyond the Usual Bounds
PAC-Bayes Analysis Beyond the Usual Bounds
Omar Rivasplata
Ilja Kuzborskij
Csaba Szepesvári
John Shawe-Taylor
33
80
0
23 Jun 2020
Uncertainty in Gradient Boosting via Ensembles
Uncertainty in Gradient Boosting via Ensembles
Aleksei Ustimenko
Liudmila Prokhorenkova
A. Malinin
UQCV
28
94
0
18 Jun 2020
Hausdorff Dimension, Heavy Tails, and Generalization in Neural Networks
Hausdorff Dimension, Heavy Tails, and Generalization in Neural Networks
Umut Simsekli
Ozan Sener
George Deligiannidis
Murat A. Erdogdu
44
55
0
16 Jun 2020
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Jeff Z. HaoChen
Colin Wei
J. Lee
Tengyu Ma
29
93
0
15 Jun 2020
An Analysis of Constant Step Size SGD in the Non-convex Regime:
  Asymptotic Normality and Bias
An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias
Lu Yu
Krishnakumar Balasubramanian
S. Volgushev
Murat A. Erdogdu
35
50
0
14 Jun 2020
On the Convergence of Langevin Monte Carlo: The Interplay between Tail
  Growth and Smoothness
On the Convergence of Langevin Monte Carlo: The Interplay between Tail Growth and Smoothness
Murat A. Erdogdu
Rasa Hosseinzadeh
6
74
0
27 May 2020
Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo
  under local conditions for nonconvex optimization
Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo under local conditions for nonconvex optimization
Ömer Deniz Akyildiz
Sotirios Sabanis
43
17
0
13 Feb 2020
Wasserstein Control of Mirror Langevin Monte Carlo
Wasserstein Control of Mirror Langevin Monte Carlo
Kelvin Shuangjian Zhang
Gabriel Peyré
M. Fadili
Marcelo Pereyra
19
65
0
11 Feb 2020
Replica Exchange for Non-Convex Optimization
Replica Exchange for Non-Convex Optimization
Jing-rong Dong
Xin T. Tong
14
21
0
23 Jan 2020
Information-Theoretic Generalization Bounds for SGLD via Data-Dependent
  Estimates
Information-Theoretic Generalization Bounds for SGLD via Data-Dependent Estimates
Jeffrey Negrea
Mahdi Haghifam
Gintare Karolina Dziugaite
Ashish Khisti
Daniel M. Roy
FedML
113
147
0
06 Nov 2019
An Adaptive Empirical Bayesian Method for Sparse Deep Learning
An Adaptive Empirical Bayesian Method for Sparse Deep Learning
Wei Deng
Xiao Zhang
F. Liang
Guang Lin
BDL
18
42
0
23 Oct 2019
Non-Gaussianity of Stochastic Gradient Noise
Non-Gaussianity of Stochastic Gradient Noise
A. Panigrahi
Raghav Somani
Navin Goyal
Praneeth Netrapalli
15
52
0
21 Oct 2019
Aggregated Gradient Langevin Dynamics
Aggregated Gradient Langevin Dynamics
Chao Zhang
Jiahao Xie
Zebang Shen
P. Zhao
Tengfei Zhou
Hui Qian
28
1
0
21 Oct 2019
Stochastic gradient Markov chain Monte Carlo
Stochastic gradient Markov chain Monte Carlo
Christopher Nemeth
Paul Fearnhead
BDL
22
134
0
16 Jul 2019
SNAP: Finding Approximate Second-Order Stationary Solutions Efficiently
  for Non-convex Linearly Constrained Problems
SNAP: Finding Approximate Second-Order Stationary Solutions Efficiently for Non-convex Linearly Constrained Problems
Songtao Lu
Meisam Razaviyayn
Bo Yang
Kejun Huang
Mingyi Hong
27
11
0
09 Jul 2019
Chaining Meets Chain Rule: Multilevel Entropic Regularization and
  Training of Neural Nets
Chaining Meets Chain Rule: Multilevel Entropic Regularization and Training of Neural Nets
Amir-Reza Asadi
Emmanuel Abbe
BDL
AI4CE
34
13
0
26 Jun 2019
Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Learning
Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Learning
Huy N. Chau
M. Rásonyi
25
10
0
25 Mar 2019
Annealing for Distributed Global Optimization
Annealing for Distributed Global Optimization
Brian Swenson
S. Kar
H. Vincent Poor
J. M. F. Moura
17
30
0
18 Mar 2019
An Empirical Study of Large-Batch Stochastic Gradient Descent with
  Structured Covariance Noise
An Empirical Study of Large-Batch Stochastic Gradient Descent with Structured Covariance Noise
Yeming Wen
Kevin Luk
Maxime Gazeau
Guodong Zhang
Harris Chan
Jimmy Ba
ODL
20
22
0
21 Feb 2019
A Tail-Index Analysis of Stochastic Gradient Noise in Deep Neural
  Networks
A Tail-Index Analysis of Stochastic Gradient Noise in Deep Neural Networks
Umut Simsekli
Levent Sagun
Mert Gurbuzbalaban
17
237
0
18 Jan 2019
On stochastic gradient Langevin dynamics with dependent data streams in
  the logconcave case
On stochastic gradient Langevin dynamics with dependent data streams in the logconcave case
M. Barkhagen
N. H. Chau
'. Moulines
Miklós Rásonyi
S. Sabanis
Ying Zhang
21
37
0
06 Dec 2018
Towards Theoretical Understanding of Large Batch Training in Stochastic
  Gradient Descent
Towards Theoretical Understanding of Large Batch Training in Stochastic Gradient Descent
Xiaowu Dai
Yuhua Zhu
25
11
0
03 Dec 2018
Simulated Tempering Langevin Monte Carlo II: An Improved Proof using
  Soft Markov Chain Decomposition
Simulated Tempering Langevin Monte Carlo II: An Improved Proof using Soft Markov Chain Decomposition
Rong Ge
Holden Lee
Andrej Risteski
14
27
0
29 Nov 2018
Sampling Can Be Faster Than Optimization
Sampling Can Be Faster Than Optimization
Yian Ma
Yuansi Chen
Chi Jin
Nicolas Flammarion
Michael I. Jordan
11
183
0
20 Nov 2018
Previous
123
Next