ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.03849
  4. Cited By
Non-convex learning via Stochastic Gradient Langevin Dynamics: a
  nonasymptotic analysis

Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis

13 February 2017
Maxim Raginsky
Alexander Rakhlin
Matus Telgarsky
ArXivPDFHTML

Papers citing "Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis"

14 / 114 papers shown
Title
Continuous-time Models for Stochastic Optimization Algorithms
Continuous-time Models for Stochastic Optimization Algorithms
Antonio Orvieto
Aurelien Lucchi
13
31
0
05 Oct 2018
Stochastic Particle-Optimization Sampling and the Non-Asymptotic
  Convergence Theory
Stochastic Particle-Optimization Sampling and the Non-Asymptotic Convergence Theory
Jianyi Zhang
Ruiyi Zhang
Lawrence Carin
Changyou Chen
12
46
0
05 Sep 2018
On sampling from a log-concave density using kinetic Langevin diffusions
On sampling from a log-concave density using kinetic Langevin diffusions
A. Dalalyan
L. Riou-Durand
24
155
0
24 Jul 2018
Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal
  Transport and Diffusions
Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions
Antoine Liutkus
Umut Simsekli
Szymon Majewski
Alain Durmus
Fabian-Robert Stöter
DiffM
35
119
0
21 Jun 2018
Stochastic Nested Variance Reduction for Nonconvex Optimization
Stochastic Nested Variance Reduction for Nonconvex Optimization
Dongruo Zhou
Pan Xu
Quanquan Gu
25
146
0
20 Jun 2018
Bayesian Pose Graph Optimization via Bingham Distributions and Tempered
  Geodesic MCMC
Bayesian Pose Graph Optimization via Bingham Distributions and Tempered Geodesic MCMC
Tolga Birdal
Umut Simsekli
M. Eken
Slobodan Ilic
22
38
0
31 May 2018
Constrained Deep Learning using Conditional Gradient and Applications in
  Computer Vision
Constrained Deep Learning using Conditional Gradient and Applications in Computer Vision
Sathya Ravi
Tuan Dinh
Vishnu Suresh Lokhande
Vikas Singh
AI4CE
33
22
0
17 Mar 2018
Sampling as optimization in the space of measures: The Langevin dynamics
  as a composite optimization problem
Sampling as optimization in the space of measures: The Langevin dynamics as a composite optimization problem
Andre Wibisono
21
177
0
22 Feb 2018
Stochastic Variance-Reduced Hamilton Monte Carlo Methods
Stochastic Variance-Reduced Hamilton Monte Carlo Methods
Difan Zou
Pan Xu
Quanquan Gu
BDL
24
31
0
13 Feb 2018
On Connecting Stochastic Gradient MCMC and Differential Privacy
On Connecting Stochastic Gradient MCMC and Differential Privacy
Bai Li
Changyou Chen
Hao Liu
Lawrence Carin
41
38
0
25 Dec 2017
Beyond Log-concavity: Provable Guarantees for Sampling Multi-modal
  Distributions using Simulated Tempering Langevin Monte Carlo
Beyond Log-concavity: Provable Guarantees for Sampling Multi-modal Distributions using Simulated Tempering Langevin Monte Carlo
Rong Ge
Holden Lee
Andrej Risteski
26
53
0
07 Oct 2017
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex
  Optimization
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization
Pan Xu
Jinghui Chen
Difan Zou
Quanquan Gu
31
200
0
20 Jul 2017
Underdamped Langevin MCMC: A non-asymptotic analysis
Underdamped Langevin MCMC: A non-asymptotic analysis
Xiang Cheng
Niladri S. Chatterji
Peter L. Bartlett
Michael I. Jordan
36
293
0
12 Jul 2017
The Marginal Value of Adaptive Gradient Methods in Machine Learning
The Marginal Value of Adaptive Gradient Methods in Machine Learning
Ashia C. Wilson
Rebecca Roelofs
Mitchell Stern
Nathan Srebro
Benjamin Recht
ODL
20
1,012
0
23 May 2017
Previous
123