ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1701.04722
  4. Cited By
Adversarial Variational Bayes: Unifying Variational Autoencoders and
  Generative Adversarial Networks

Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks

17 January 2017
L. Mescheder
Sebastian Nowozin
Andreas Geiger
    GAN
    BDL
ArXivPDFHTML

Papers citing "Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks"

50 / 270 papers shown
Title
Leveraging Relational Information for Learning Weakly Disentangled
  Representations
Leveraging Relational Information for Learning Weakly Disentangled Representations
Andrea Valenti
D. Bacciu
CoGe
DRL
27
5
0
20 May 2022
A Unified f-divergence Framework Generalizing VAE and GAN
A Unified f-divergence Framework Generalizing VAE and GAN
Jaime Roquero Gimenez
James Zou
13
2
0
11 May 2022
Unsupervised Mismatch Localization in Cross-Modal Sequential Data with
  Application to Mispronunciations Localization
Unsupervised Mismatch Localization in Cross-Modal Sequential Data with Application to Mispronunciations Localization
Wei Wei
Hengguan Huang
Xiangming Gu
Hao Wang
Ye Wang
BDL
22
0
0
05 May 2022
Synthesizing Informative Training Samples with GAN
Synthesizing Informative Training Samples with GAN
Bo-Lu Zhao
Hakan Bilen
DD
28
74
0
15 Apr 2022
Diagnosing and Fixing Manifold Overfitting in Deep Generative Models
Diagnosing and Fixing Manifold Overfitting in Deep Generative Models
G. Loaiza-Ganem
Brendan Leigh Ross
Jesse C. Cresswell
Anthony L. Caterini
GAN
DRL
16
28
0
14 Apr 2022
Inference over radiative transfer models using variational and
  expectation maximization methods
Inference over radiative transfer models using variational and expectation maximization methods
D. Svendsen
Daniel Hernández-Lobato
Luca Martino
Valero Laparra
Á. Moreno-Martínez
Gustau Camps-Valls
39
4
0
07 Apr 2022
Upsampling Autoencoder for Self-Supervised Point Cloud Learning
Upsampling Autoencoder for Self-Supervised Point Cloud Learning
Cheng Zhang
Jian Shi
X. Deng
Zizhao Wu
3DPC
27
8
0
21 Mar 2022
GATSBI: Generative Adversarial Training for Simulation-Based Inference
GATSBI: Generative Adversarial Training for Simulation-Based Inference
Poornima Ramesh
Jan-Matthis Lueckmann
Jan Boelts
Álvaro Tejero-Cantero
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
GAN
45
33
0
12 Mar 2022
Deep clustering with fusion autoencoder
Deep clustering with fusion autoencoder
Shuai Chang
DRL
14
0
0
11 Jan 2022
Lifelong Generative Modelling Using Dynamic Expansion Graph Model
Lifelong Generative Modelling Using Dynamic Expansion Graph Model
Fei Ye
A. Bors
CLL
14
10
0
15 Dec 2021
Analyzing High-Resolution Clouds and Convection using Multi-Channel VAEs
Analyzing High-Resolution Clouds and Convection using Multi-Channel VAEs
Harshini Mangipudi
G. Mooers
Michael S. Pritchard
Tom Beucler
Stephan Mandt
8
2
0
01 Dec 2021
Generative Adversarial Networks and Adversarial Autoencoders: Tutorial
  and Survey
Generative Adversarial Networks and Adversarial Autoencoders: Tutorial and Survey
Benyamin Ghojogh
A. Ghodsi
Fakhri Karray
Mark Crowley
GAN
34
12
0
26 Nov 2021
NeurInt : Learning to Interpolate through Neural ODEs
NeurInt : Learning to Interpolate through Neural ODEs
Avinandan Bose
Aniket Das
Yatin Dandi
P. Rai
DiffM
DRL
17
0
0
07 Nov 2021
Variational Inference with Holder Bounds
Variational Inference with Holder Bounds
Junya Chen
Danni Lu
Zidi Xiu
Ke Bai
Lawrence Carin
Chenyang Tao
19
6
0
04 Nov 2021
Function-space Inference with Sparse Implicit Processes
Function-space Inference with Sparse Implicit Processes
Simón Rodríguez Santana
B. Zaldívar
Daniel Hernández-Lobato
26
11
0
14 Oct 2021
Statistical Regeneration Guarantees of the Wasserstein Autoencoder with
  Latent Space Consistency
Statistical Regeneration Guarantees of the Wasserstein Autoencoder with Latent Space Consistency
A. Chakrabarty
Swagatam Das
DRL
14
6
0
08 Oct 2021
Reliable Estimation of KL Divergence using a Discriminator in
  Reproducing Kernel Hilbert Space
Reliable Estimation of KL Divergence using a Discriminator in Reproducing Kernel Hilbert Space
S. Ghimire
A. Masoomi
Jennifer Dy
23
7
0
29 Sep 2021
Inferential Wasserstein Generative Adversarial Networks
Inferential Wasserstein Generative Adversarial Networks
Yao Chen
Qingyi Gao
Xiao Wang
GAN
105
19
0
13 Sep 2021
Stochastic Physics-Informed Neural Ordinary Differential Equations
Stochastic Physics-Informed Neural Ordinary Differential Equations
Jared O’Leary
J. Paulson
A. Mesbah
17
37
0
03 Sep 2021
Deep Dive into Semi-Supervised ELBO for Improving Classification
  Performance
Deep Dive into Semi-Supervised ELBO for Improving Classification Performance
Fahim Faisal Niloy
M. A. Amin
Akm Mahbubur Rahman
A. Ali
DRL
25
0
0
29 Aug 2021
Efficient Out-of-Distribution Detection Using Latent Space of
  $β$-VAE for Cyber-Physical Systems
Efficient Out-of-Distribution Detection Using Latent Space of βββ-VAE for Cyber-Physical Systems
Shreyas Ramakrishna
Zahra Rahiminasab
G. Karsai
Arvind Easwaran
Abhishek Dubey
OODD
19
27
0
26 Aug 2021
Regularized Sequential Latent Variable Models with Adversarial Neural
  Networks
Regularized Sequential Latent Variable Models with Adversarial Neural Networks
Jin Huang
Ming Xiao
BDL
GNN
DRL
GAN
19
3
0
10 Aug 2021
P-WAE: Generalized Patch-Wasserstein Autoencoder for Anomaly Screening
Yurong Chen
51
0
0
09 Aug 2021
Lifelong Teacher-Student Network Learning
Lifelong Teacher-Student Network Learning
Fei Ye
A. Bors
CLL
15
44
0
09 Jul 2021
Deep Image Synthesis from Intuitive User Input: A Review and
  Perspectives
Deep Image Synthesis from Intuitive User Input: A Review and Perspectives
Yuan Xue
Yuanchen Guo
Han Zhang
Tao Xu
Song-Hai Zhang
Xiaolei Huang
EGVM
3DV
18
22
0
09 Jul 2021
Calliope -- A Polyphonic Music Transformer
Calliope -- A Polyphonic Music Transformer
Andrea Valenti
S. Berti
D. Bacciu
ViT
22
1
0
08 Jul 2021
KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint
  Support
KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support
Pierre Glaser
Michael Arbel
A. Gretton
44
37
0
16 Jun 2021
Bayesian graph convolutional neural networks via tempered MCMC
Bayesian graph convolutional neural networks via tempered MCMC
Rohitash Chandra
A. Bhagat
Manavendra Maharana
P. Krivitsky
GNN
BDL
23
16
0
17 Apr 2021
Revisiting Bayesian Autoencoders with MCMC
Revisiting Bayesian Autoencoders with MCMC
Rohitash Chandra
Mahir Jain
Manavendra Maharana
P. Krivitsky
UQCV
BDL
29
17
0
13 Apr 2021
Transitional Learning: Exploring the Transition States of Degradation
  for Blind Super-resolution
Transitional Learning: Exploring the Transition States of Degradation for Blind Super-resolution
Yuanfei Huang
Jie Li
Yanting Hu
Xinbo Gao
Huan Huang
26
4
0
29 Mar 2021
Adversarial and Contrastive Variational Autoencoder for Sequential
  Recommendation
Adversarial and Contrastive Variational Autoencoder for Sequential Recommendation
Zhe Xie
Chengxuan Liu
Yichi Zhang
Hongtao Lu
Dong Wang
Yue Ding
BDL
DRL
28
91
0
19 Mar 2021
DP-Image: Differential Privacy for Image Data in Feature Space
DP-Image: Differential Privacy for Image Data in Feature Space
Hanyu Xue
Bo Liu
Ming Ding
Tianqing Zhu
Dayong Ye
Li-Na Song
Wanlei Zhou
15
33
0
12 Mar 2021
Variational inference with a quantum computer
Variational inference with a quantum computer
Marcello Benedetti
Brian Coyle
Mattia Fiorentini
M. Lubasch
Matthias Rosenkranz
BDL
22
37
0
11 Mar 2021
Posterior Meta-Replay for Continual Learning
Posterior Meta-Replay for Continual Learning
Christian Henning
Maria R. Cervera
Francesco DÁngelo
J. Oswald
Regina Traber
Benjamin Ehret
Seijin Kobayashi
Benjamin Grewe
João Sacramento
CLL
BDL
51
54
0
01 Mar 2021
Variational Selective Autoencoder: Learning from Partially-Observed
  Heterogeneous Data
Variational Selective Autoencoder: Learning from Partially-Observed Heterogeneous Data
Yu Gong
Hossein Hajimirsadeghi
Jiawei He
Thibaut Durand
Greg Mori
CML
25
11
0
25 Feb 2021
Mind the Gap when Conditioning Amortised Inference in Sequential
  Latent-Variable Models
Mind the Gap when Conditioning Amortised Inference in Sequential Latent-Variable Models
Justin Bayer
Maximilian Soelch
Atanas Mirchev
Baris Kayalibay
Patrick van der Smagt
29
15
0
18 Jan 2021
Self-Supervised Pretraining of 3D Features on any Point-Cloud
Self-Supervised Pretraining of 3D Features on any Point-Cloud
Zaiwei Zhang
Rohit Girdhar
Armand Joulin
Ishan Misra
3DPC
126
268
0
07 Jan 2021
Factor Analysis, Probabilistic Principal Component Analysis, Variational
  Inference, and Variational Autoencoder: Tutorial and Survey
Factor Analysis, Probabilistic Principal Component Analysis, Variational Inference, and Variational Autoencoder: Tutorial and Survey
Benyamin Ghojogh
A. Ghodsi
Fakhri Karray
Mark Crowley
DRL
22
34
0
04 Jan 2021
Infer-AVAE: An Attribute Inference Model Based on Adversarial
  Variational Autoencoder
Infer-AVAE: An Attribute Inference Model Based on Adversarial Variational Autoencoder
Yadong Zhou
Zhihao Ding
Xiaoming Liu
Chao Shen
Lingling Tong
X. Guan
BDL
DRL
14
8
0
30 Dec 2020
Acoustic Leak Detection in Water Networks
Acoustic Leak Detection in Water Networks
Robert Muller
Steffen Illium
Fabian Ritz
T. Schröder
Christian Platschek
J. Ochs
Claudia Linnhoff-Popien
20
13
0
11 Dec 2020
Conditional Generation of Medical Images via Disentangled Adversarial
  Inference
Conditional Generation of Medical Images via Disentangled Adversarial Inference
Mohammad Havaei
Ximeng Mao
Yiping Wang
Qicheng Lao
GAN
MedIm
26
20
0
08 Dec 2020
End-To-End Dilated Variational Autoencoder with Bottleneck
  Discriminative Loss for Sound Morphing -- A Preliminary Study
End-To-End Dilated Variational Autoencoder with Bottleneck Discriminative Loss for Sound Morphing -- A Preliminary Study
Matteo Lionello
Hendrik Purwins
26
0
0
19 Nov 2020
Learning on Attribute-Missing Graphs
Learning on Attribute-Missing Graphs
Xu Chen
Siheng Chen
Jiangchao Yao
Huangjie Zheng
Ya-Qin Zhang
Ivor W Tsang
24
85
0
03 Nov 2020
The ELBO of Variational Autoencoders Converges to a Sum of Three
  Entropies
The ELBO of Variational Autoencoders Converges to a Sum of Three Entropies
Simon Damm
D. Forster
Dmytro Velychko
Zhenwen Dai
Asja Fischer
Jörg Lücke
DRL
22
5
0
28 Oct 2020
Out-of-distribution detection for regression tasks: parameter versus
  predictor entropy
Out-of-distribution detection for regression tasks: parameter versus predictor entropy
Y. Pequignot
Mathieu Alain
Patrick Dallaire
Alireza Yeganehparast
Pascal Germain
Josée Desharnais
Franccois Laviolette
OODD
9
2
0
24 Oct 2020
Autoencoder Watchdog Outlier Detection for Classifiers
Autoencoder Watchdog Outlier Detection for Classifiers
Justin Bui
R. Marks
31
7
0
24 Oct 2020
A semi-supervised autoencoder framework for joint generation and
  classification of breathing
A semi-supervised autoencoder framework for joint generation and classification of breathing
O. Pastor-Serrano
D. Lathouwers
Zoltán Perkó
MedIm
AI4TS
14
0
0
19 Oct 2020
Regularized Inverse Reinforcement Learning
Regularized Inverse Reinforcement Learning
Wonseok Jeon
Chen-Yang Su
Paul Barde
T. Doan
Derek Nowrouzezahrai
Joelle Pineau
25
11
0
07 Oct 2020
A Contrastive Learning Approach for Training Variational Autoencoder
  Priors
A Contrastive Learning Approach for Training Variational Autoencoder Priors
J. Aneja
A. Schwing
Jan Kautz
Arash Vahdat
DRL
8
81
0
06 Oct 2020
MCMC-Interactive Variational Inference
MCMC-Interactive Variational Inference
Quan Zhang
Huangjie Zheng
Mingyuan Zhou
14
1
0
02 Oct 2020
Previous
123456
Next