ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1701.04722
  4. Cited By
Adversarial Variational Bayes: Unifying Variational Autoencoders and
  Generative Adversarial Networks

Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks

17 January 2017
L. Mescheder
Sebastian Nowozin
Andreas Geiger
    GAN
    BDL
ArXivPDFHTML

Papers citing "Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks"

50 / 270 papers shown
Title
Game Theoretic Optimization via Gradient-based Nikaido-Isoda Function
Game Theoretic Optimization via Gradient-based Nikaido-Isoda Function
A. Raghunathan
A. Cherian
Devesh K. Jha
12
21
0
15 May 2019
Multi-class Novelty Detection Using Mix-up Technique
Multi-class Novelty Detection Using Mix-up Technique
Supritam Bhattacharjee
Devraj Mandal
Soma Biswas
25
14
0
11 May 2019
Importance Weighted Hierarchical Variational Inference
Importance Weighted Hierarchical Variational Inference
Artem Sobolev
Dmitry Vetrov
BDL
8
26
0
08 May 2019
FaceShapeGene: A Disentangled Shape Representation for Flexible Face
  Image Editing
FaceShapeGene: A Disentangled Shape Representation for Flexible Face Image Editing
Sen-Zhe Xu
Haozhi Huang
Shimin Hu
Wei Liu
CVBM
6
5
0
06 May 2019
Scaling and Benchmarking Self-Supervised Visual Representation Learning
Scaling and Benchmarking Self-Supervised Visual Representation Learning
Priya Goyal
D. Mahajan
Abhinav Gupta
Ishan Misra
SSL
24
396
0
03 May 2019
Copula-like Variational Inference
Copula-like Variational Inference
Marcel Hirt
P. Dellaportas
Alain Durmus
4
5
0
15 Apr 2019
Towards Photographic Image Manipulation with Balanced Growing of
  Generative Autoencoders
Towards Photographic Image Manipulation with Balanced Growing of Generative Autoencoders
Ari Heljakka
Arno Solin
Arno Solin
DRL
CVBM
27
15
0
12 Apr 2019
Attentive Action and Context Factorization
Attentive Action and Context Factorization
Yunhong Wang
Vinh Tran
Gedas Bertasius
Lorenzo Torresani
Minh Hoai
12
6
0
10 Apr 2019
Sliced Wasserstein Generative Models
Jiqing Wu
Zhiwu Huang
Dinesh Acharya
Wen Li
Janine Thoma
D. Paudel
Luc Van Gool
DiffM
22
124
0
10 Apr 2019
Conditional Adversarial Generative Flow for Controllable Image Synthesis
Conditional Adversarial Generative Flow for Controllable Image Synthesis
R. Liu
Yu Liu
Xinyu Gong
Xiaogang Wang
Hongsheng Li
19
45
0
03 Apr 2019
Variational Adversarial Active Learning
Variational Adversarial Active Learning
Samarth Sinha
Sayna Ebrahimi
Trevor Darrell
GAN
DRL
VLM
SSL
39
570
0
31 Mar 2019
Persona-Aware Tips Generation
Persona-Aware Tips Generation
Piji Li
Zihao Wang
Lidong Bing
Wai Lam
20
40
0
06 Mar 2019
Learning More with Less: Conditional PGGAN-based Data Augmentation for
  Brain Metastases Detection Using Highly-Rough Annotation on MR Images
Learning More with Less: Conditional PGGAN-based Data Augmentation for Brain Metastases Detection Using Highly-Rough Annotation on MR Images
Changhee Han
K. Murao
T. Noguchi
Yusuke Kawata
F. Uchiyama
L. Rundo
Hideki Nakayama
Shiníchi Satoh
MedIm
8
98
0
26 Feb 2019
Learning Compositional Representations of Interacting Systems with
  Restricted Boltzmann Machines: Comparative Study of Lattice Proteins
Learning Compositional Representations of Interacting Systems with Restricted Boltzmann Machines: Comparative Study of Lattice Proteins
J. Tubiana
Simona Cocco
R. Monasson
22
28
0
18 Feb 2019
Adversarially Approximated Autoencoder for Image Generation and
  Manipulation
Adversarially Approximated Autoencoder for Image Generation and Manipulation
Wenju Xu
Shawn Keshmiri
Guanghui Wang
GAN
29
71
0
14 Feb 2019
Differential Similarity in Higher Dimensional Spaces: Theory and
  Applications
Differential Similarity in Higher Dimensional Spaces: Theory and Applications
L. McCarty
17
0
0
10 Feb 2019
Adversarial Networks and Autoencoders: The Primal-Dual Relationship and
  Generalization Bounds
Adversarial Networks and Autoencoders: The Primal-Dual Relationship and Generalization Bounds
Hisham Husain
Richard Nock
Robert C. Williamson
GAN
DRL
11
3
0
03 Feb 2019
Probability Functional Descent: A Unifying Perspective on GANs,
  Variational Inference, and Reinforcement Learning
Probability Functional Descent: A Unifying Perspective on GANs, Variational Inference, and Reinforcement Learning
Casey Chu
Jose H. Blanchet
Peter Glynn
GAN
19
26
0
30 Jan 2019
Disentangling and Learning Robust Representations with Natural
  Clustering
Disentangling and Learning Robust Representations with Natural Clustering
Javier Antorán
A. Miguel
CoGe
OOD
CML
DRL
6
19
0
27 Jan 2019
Learning Disentangled Representations with Reference-Based Variational
  Autoencoders
Learning Disentangled Representations with Reference-Based Variational Autoencoders
Adria Ruiz
Oriol Martínez
Xavier Binefa
Jakob Verbeek
OOD
CoGe
DRL
6
26
0
24 Jan 2019
Adversarial training with cycle consistency for unsupervised
  super-resolution in endomicroscopy
Adversarial training with cycle consistency for unsupervised super-resolution in endomicroscopy
D. Ravì
A. Szczotka
Stephen P. Pereira
Tom Kamiel Magda Vercauteren
SupR
MedIm
27
49
0
21 Jan 2019
Conditional deep surrogate models for stochastic, high-dimensional, and
  multi-fidelity systems
Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems
Yibo Yang
P. Perdikaris
SyDa
BDL
AI4CE
26
55
0
15 Jan 2019
Adversarial Learning of a Sampler Based on an Unnormalized Distribution
Adversarial Learning of a Sampler Based on an Unnormalized Distribution
Chunyuan Li
Ke Bai
Jianqiao Li
Guoyin Wang
Changyou Chen
Lawrence Carin
14
10
0
03 Jan 2019
Disentangling Latent Space for VAE by Label Relevant/Irrelevant
  Dimensions
Disentangling Latent Space for VAE by Label Relevant/Irrelevant Dimensions
Zhilin Zheng
Li Sun
CML
CoGe
DRL
12
46
0
22 Dec 2018
Variational Autoencoders Pursue PCA Directions (by Accident)
Variational Autoencoders Pursue PCA Directions (by Accident)
Michal Rolínek
Dominik Zietlow
Georg Martius
OOD
DRL
11
149
0
17 Dec 2018
Traversing Latent Space using Decision Ferns
Traversing Latent Space using Decision Ferns
Yan Zuo
Gil Avraham
Tom Drummond
14
4
0
06 Dec 2018
Partitioned Variational Inference: A unified framework encompassing
  federated and continual learning
Partitioned Variational Inference: A unified framework encompassing federated and continual learning
T. Bui
Cuong V Nguyen
S. Swaroop
Richard Turner
FedML
16
55
0
27 Nov 2018
Deep Knockoffs
Deep Knockoffs
Yaniv Romano
Matteo Sesia
Emmanuel J. Candès
BDL
18
139
0
16 Nov 2018
Adversarial Uncertainty Quantification in Physics-Informed Neural
  Networks
Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
Yibo Yang
P. Perdikaris
AI4CE
PINN
13
354
0
09 Nov 2018
Resampled Priors for Variational Autoencoders
Resampled Priors for Variational Autoencoders
Matthias Bauer
A. Mnih
BDL
DRL
11
110
0
26 Oct 2018
Efficiently measuring a quantum device using machine learning
Efficiently measuring a quantum device using machine learning
D. Lennon
H. Moon
L. Camenzind
Liuqi Yu
D. Zumbuhl
G. Briggs
Michael A. Osborne
E. Laird
N. Ares
9
67
0
23 Oct 2018
Sparsemax and Relaxed Wasserstein for Topic Sparsity
Sparsemax and Relaxed Wasserstein for Topic Sparsity
Tianyi Lin
Z. Hu
Xin Guo
14
37
0
22 Oct 2018
Metropolis-Hastings view on variational inference and adversarial
  training
Metropolis-Hastings view on variational inference and adversarial training
Kirill Neklyudov
Evgenii Egorov
Pavel Shvechikov
Dmitry Vetrov
GAN
29
13
0
16 Oct 2018
MDGAN: Boosting Anomaly Detection Using \\Multi-Discriminator Generative
  Adversarial Networks
MDGAN: Boosting Anomaly Detection Using \\Multi-Discriminator Generative Adversarial Networks
Yotam Intrator
Gilad Katz
A. Shabtai
4
21
0
11 Oct 2018
Pairwise Augmented GANs with Adversarial Reconstruction Loss
Pairwise Augmented GANs with Adversarial Reconstruction Loss
Aibek Alanov
Max Kochurov
D. Yashkov
Dmitry Vetrov
GAN
19
3
0
11 Oct 2018
Entropic GANs meet VAEs: A Statistical Approach to Compute Sample
  Likelihoods in GANs
Entropic GANs meet VAEs: A Statistical Approach to Compute Sample Likelihoods in GANs
Yogesh Balaji
Hamed Hassani
Rama Chellappa
S. Feizi
GAN
DRL
41
20
0
09 Oct 2018
Doubly Semi-Implicit Variational Inference
Doubly Semi-Implicit Variational Inference
Dmitry Molchanov
V. Kharitonov
Artem Sobolev
Dmitry Vetrov
BDL
16
38
0
05 Oct 2018
Variational Discriminator Bottleneck: Improving Imitation Learning,
  Inverse RL, and GANs by Constraining Information Flow
Variational Discriminator Bottleneck: Improving Imitation Learning, Inverse RL, and GANs by Constraining Information Flow
Xue Bin Peng
Angjoo Kanazawa
Sam Toyer
Pieter Abbeel
Sergey Levine
30
213
0
01 Oct 2018
Latent Space Optimal Transport for Generative Models
Latent Space Optimal Transport for Generative Models
Huidong Liu
Yang Guo
Na Lei
Zhixin Shu
S. Yau
Dimitris Samaras
X. Gu
OT
DRL
11
7
0
16 Sep 2018
Variational Autoencoder with Implicit Optimal Priors
Variational Autoencoder with Implicit Optimal Priors
Hiroshi Takahashi
Tomoharu Iwata
Yuki Yamanaka
Masanori Yamada
Satoshi Yagi
DRL
26
61
0
14 Sep 2018
Improving Explorability in Variational Inference with Annealed
  Variational Objectives
Improving Explorability in Variational Inference with Annealed Variational Objectives
Chin-Wei Huang
Shawn Tan
Alexandre Lacoste
Aaron Courville
DRL
9
47
0
06 Sep 2018
Unbiased Implicit Variational Inference
Unbiased Implicit Variational Inference
Michalis K. Titsias
Francisco J. R. Ruiz
BDL
24
52
0
06 Aug 2018
A Review of Learning with Deep Generative Models from Perspective of
  Graphical Modeling
A Review of Learning with Deep Generative Models from Perspective of Graphical Modeling
Zhijian Ou
25
16
0
05 Aug 2018
Understanding and Improving Interpolation in Autoencoders via an
  Adversarial Regularizer
Understanding and Improving Interpolation in Autoencoders via an Adversarial Regularizer
David Berthelot
Colin Raffel
Aurko Roy
Ian Goodfellow
10
260
0
19 Jul 2018
Generative adversarial interpolative autoencoding: adversarial training
  on latent space interpolations encourage convex latent distributions
Generative adversarial interpolative autoencoding: adversarial training on latent space interpolations encourage convex latent distributions
Tim Sainburg
Marvin Thielk
Brad Theilman
Benjamin Migliori
T. Gentner
DRL
GAN
25
54
0
17 Jul 2018
Avoiding Latent Variable Collapse With Generative Skip Models
Avoiding Latent Variable Collapse With Generative Skip Models
Adji Bousso Dieng
Yoon Kim
Alexander M. Rush
David M. Blei
DRL
19
172
0
12 Jul 2018
Generative Adversarial Networks with Decoder-Encoder Output Noise
Generative Adversarial Networks with Decoder-Encoder Output Noise
G. Zhong
Wei Gao
Yongbin Liu
Youzhao Yang
GAN
25
7
0
11 Jul 2018
Handling Incomplete Heterogeneous Data using VAEs
Handling Incomplete Heterogeneous Data using VAEs
A. Nazábal
Pablo Martínez Olmos
Zoubin Ghahramani
Isabel Valera
13
342
0
10 Jul 2018
Pioneer Networks: Progressively Growing Generative Autoencoder
Pioneer Networks: Progressively Growing Generative Autoencoder
Ari Heljakka
Arno Solin
Arno Solin
GAN
DRL
27
41
0
09 Jul 2018
Learning a Representation Map for Robot Navigation using Deep
  Variational Autoencoder
Learning a Representation Map for Robot Navigation using Deep Variational Autoencoder
Kai-Chun Hu
Peter O'Connor
SSL
DRL
14
1
0
05 Jul 2018
Previous
123456
Next