ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.01474
  4. Cited By
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
v1v2v3 (latest)

Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles

5 December 2016
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
    UQCVBDL
ArXiv (abs)PDFHTML

Papers citing "Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles"

50 / 3,224 papers shown
Title
What Do We Mean by Generalization in Federated Learning?
What Do We Mean by Generalization in Federated Learning?
Honglin Yuan
Warren Morningstar
Lin Ning
K. Singhal
OODFedML
123
76
0
27 Oct 2021
Diversity Enhanced Active Learning with Strictly Proper Scoring Rules
Diversity Enhanced Active Learning with Strictly Proper Scoring Rules
Wei Tan
Lan Du
Wray Buntine
66
32
0
27 Oct 2021
Diversity Matters When Learning From Ensembles
Diversity Matters When Learning From Ensembles
G. Nam
Jongmin Yoon
Yoonho Lee
Juho Lee
UQCVFedMLVLM
93
36
0
27 Oct 2021
Reliable and Trustworthy Machine Learning for Health Using Dataset Shift
  Detection
Reliable and Trustworthy Machine Learning for Health Using Dataset Shift Detection
Chunjong Park
Anas Awadalla
Tadayoshi Kohno
Shwetak N. Patel
OOD
77
30
0
26 Oct 2021
Graph Posterior Network: Bayesian Predictive Uncertainty for Node
  Classification
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification
Maximilian Stadler
Bertrand Charpentier
Simon Geisler
Daniel Zügner
Stephan Günnemann
UQCVBDL
120
89
0
26 Oct 2021
Diversity and Generalization in Neural Network Ensembles
Diversity and Generalization in Neural Network Ensembles
Luis A. Ortega
Rafael Cabañas
A. Masegosa
FedMLUQCV
98
45
0
26 Oct 2021
Disrupting Deep Uncertainty Estimation Without Harming Accuracy
Disrupting Deep Uncertainty Estimation Without Harming Accuracy
Ido Galil
Ran El-Yaniv
AAML
48
17
0
26 Oct 2021
Improving Robustness of Deep Neural Networks for Aerial Navigation by
  Incorporating Input Uncertainty
Improving Robustness of Deep Neural Networks for Aerial Navigation by Incorporating Input Uncertainty
F. Arnez
H. Espinoza
A. Radermacher
F. Terrier
UQCV
63
7
0
26 Oct 2021
AutoDEUQ: Automated Deep Ensemble with Uncertainty Quantification
AutoDEUQ: Automated Deep Ensemble with Uncertainty Quantification
Romain Egele
R. Maulik
Krishnan Raghavan
Bethany Lusch
Isabelle M Guyon
Prasanna Balaprakash
UQCVOODBDL
134
49
0
26 Oct 2021
Which Model to Trust: Assessing the Influence of Models on the
  Performance of Reinforcement Learning Algorithms for Continuous Control Tasks
Which Model to Trust: Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms for Continuous Control Tasks
Giacomo Arcieri
David Wölfle
Eleni Chatzi
OffRL
104
5
0
25 Oct 2021
False Correlation Reduction for Offline Reinforcement Learning
False Correlation Reduction for Offline Reinforcement Learning
Arvindkumar Krishnakumar
Zuyue Fu
Lingxiao Wang
Zhuoran Yang
Chenjia Bai
Tianyi Zhou
Judy Hoffman
Jing Jiang
OffRL
76
9
0
24 Oct 2021
Robustness via Uncertainty-aware Cycle Consistency
Robustness via Uncertainty-aware Cycle Consistency
Uddeshya Upadhyay
Yanbei Chen
Zeynep Akata
94
21
0
24 Oct 2021
Perceptual Consistency in Video Segmentation
Perceptual Consistency in Video Segmentation
Yizhe Zhang
Shubhankar Borse
Hong Cai
Ying Wang
N. Bi
Xiaoyun Jiang
Fatih Porikli
VOS
50
14
0
24 Oct 2021
Quantifying Epistemic Uncertainty in Deep Learning
Quantifying Epistemic Uncertainty in Deep Learning
Ziyi Huang
Henry Lam
Haofeng Zhang
UQCVBDLUDPER
134
14
0
23 Oct 2021
Uncertainty Quantification For Low-Rank Matrix Completion With
  Heterogeneous and Sub-Exponential Noise
Uncertainty Quantification For Low-Rank Matrix Completion With Heterogeneous and Sub-Exponential Noise
Matej Zevcević
Andrew A. Li
Kristian Kersting
50
6
0
22 Oct 2021
Learning Proposals for Practical Energy-Based Regression
Learning Proposals for Practical Energy-Based Regression
L. Kumar
Martin Danelljan
Thomas B. Schon
72
4
0
22 Oct 2021
Conditional Variational Autoencoder for Learned Image Reconstruction
Conditional Variational Autoencoder for Learned Image Reconstruction
Chen Zhang
Riccardo Barbano
Bangti Jin
DRL
51
20
0
22 Oct 2021
Generalized Out-of-Distribution Detection: A Survey
Generalized Out-of-Distribution Detection: A Survey
Jingkang Yang
Kaiyang Zhou
Yixuan Li
Ziwei Liu
309
955
0
21 Oct 2021
SLURP: Side Learning Uncertainty for Regression Problems
SLURP: Side Learning Uncertainty for Regression Problems
Xuanlong Yu
Gianni Franchi
Emanuel Aldea
UQCVBDL
62
14
0
21 Oct 2021
Bayesian Meta-Learning Through Variational Gaussian Processes
Bayesian Meta-Learning Through Variational Gaussian Processes
Vivek Myers
Nikhil Sardana
BDLUQCV
36
5
0
21 Oct 2021
Towards Reducing Aleatoric Uncertainty for Medical Imaging Tasks
Towards Reducing Aleatoric Uncertainty for Medical Imaging Tasks
A. Sambyal
N. C. Krishnan
Deepti R. Bathula
UQCVMedIm
44
15
0
21 Oct 2021
Evaluation of Various Open-Set Medical Imaging Tasks with Deep Neural
  Networks
Evaluation of Various Open-Set Medical Imaging Tasks with Deep Neural Networks
Z. Ge
Xin Wang
58
7
0
21 Oct 2021
Combining Different V1 Brain Model Variants to Improve Robustness to
  Image Corruptions in CNNs
Combining Different V1 Brain Model Variants to Improve Robustness to Image Corruptions in CNNs
A. Baidya
Joel Dapello
J. DiCarlo
Tiago Marques
AAML
69
6
0
20 Oct 2021
Coalitional Bayesian Autoencoders -- Towards explainable unsupervised
  deep learning
Coalitional Bayesian Autoencoders -- Towards explainable unsupervised deep learning
Bang Xiang Yong
Alexandra Brintrup
58
7
0
19 Oct 2021
Discovering and Achieving Goals via World Models
Discovering and Achieving Goals via World Models
Russell Mendonca
Oleh Rybkin
Kostas Daniilidis
Danijar Hafner
Deepak Pathak
101
127
0
18 Oct 2021
Natural Attribute-based Shift Detection
Natural Attribute-based Shift Detection
Jeonghoon Park
Jimin Hong
Radhika Dua
Daehoon Gwak
Yixuan Li
Jaegul Choo
Edward Choi
OOD
79
3
0
18 Oct 2021
Single Layer Predictive Normalized Maximum Likelihood for
  Out-of-Distribution Detection
Single Layer Predictive Normalized Maximum Likelihood for Out-of-Distribution Detection
Koby Bibas
M. Feder
Tal Hassner
OODD
79
24
0
18 Oct 2021
Uncertainty-Aware Semi-Supervised Few Shot Segmentation
Uncertainty-Aware Semi-Supervised Few Shot Segmentation
Soopil Kim
Philip Chikontwe
Sang Hyun Park
83
15
0
18 Oct 2021
Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical
  Image Segmentation
Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation
Yinghuan Shi
Jian Zhang
T. Ling
Jiwen Lu
Yefeng Zheng
Qian Yu
Lei Qi
Yang Gao
UQCV
75
152
0
17 Oct 2021
Centroid Approximation for Bootstrap: Improving Particle Quality at
  Inference
Centroid Approximation for Bootstrap: Improving Particle Quality at Inference
Mao Ye
Qiang Liu
50
1
0
17 Oct 2021
Probabilistic Time Series Forecasts with Autoregressive Transformation
  Models
Probabilistic Time Series Forecasts with Autoregressive Transformation Models
David Rügamer
Philipp F. M. Baumann
Thomas Kneib
Torsten Hothorn
AI4TS
104
13
0
15 Oct 2021
Combining Diverse Feature Priors
Combining Diverse Feature Priors
Saachi Jain
Dimitris Tsipras
Aleksander Madry
113
14
0
15 Oct 2021
Improving Hyperparameter Optimization by Planning Ahead
Improving Hyperparameter Optimization by Planning Ahead
H. Jomaa
Jonas K. Falkner
Lars Schmidt-Thieme
64
0
0
15 Oct 2021
A Trust Crisis In Simulation-Based Inference? Your Posterior
  Approximations Can Be Unfaithful
A Trust Crisis In Simulation-Based Inference? Your Posterior Approximations Can Be Unfaithful
Joeri Hermans
Arnaud Delaunoy
François Rozet
Antoine Wehenkel
Volodimir Begy
Gilles Louppe
135
43
0
13 Oct 2021
Dropout Prediction Uncertainty Estimation Using Neuron Activation
  Strength
Dropout Prediction Uncertainty Estimation Using Neuron Activation Strength
Haichao Yu
Zhe Chen
Dong Lin
G. Shamir
Jie Han
UQCV
79
0
0
13 Oct 2021
Dense Uncertainty Estimation
Dense Uncertainty Estimation
Jing Zhang
Yuchao Dai
Mochu Xiang
Deng-Ping Fan
Peyman Moghadam
Mingyi He
Christian J. Walder
Kaihao Zhang
Mehrtash Harandi
Nick Barnes
UQCVBDL
133
11
0
13 Oct 2021
Robust Neural Regression via Uncertainty Learning
Robust Neural Regression via Uncertainty Learning
Akib Mashrur
Wei Luo
Nayyar Zaidi
A. Robles-Kelly
OODUQCV
84
3
0
12 Oct 2021
Scalable Consistency Training for Graph Neural Networks via
  Self-Ensemble Self-Distillation
Scalable Consistency Training for Graph Neural Networks via Self-Ensemble Self-Distillation
Cole Hawkins
V. Ioannidis
Soji Adeshina
George Karypis
GNNSSL
57
2
0
12 Oct 2021
The Neural Testbed: Evaluating Joint Predictions
The Neural Testbed: Evaluating Joint Predictions
Ian Osband
Zheng Wen
S. Asghari
Vikranth Dwaracherla
Botao Hao
M. Ibrahimi
Dieterich Lawson
Xiuyuan Lu
Brendan O'Donoghue
Benjamin Van Roy
UQCV
94
22
0
09 Oct 2021
An Uncertainty-Informed Framework for Trustworthy Fault Diagnosis in
  Safety-Critical Applications
An Uncertainty-Informed Framework for Trustworthy Fault Diagnosis in Safety-Critical Applications
Taotao Zhou
E. Droguett
A. Mosleh
F. Chan
EDL
71
40
0
08 Oct 2021
Revisiting Design Choices in Offline Model-Based Reinforcement Learning
Revisiting Design Choices in Offline Model-Based Reinforcement Learning
Cong Lu
Philip J. Ball
Jack Parker-Holder
Michael A. Osborne
Stephen J. Roberts
OffRL
95
57
0
08 Oct 2021
Pathologies in priors and inference for Bayesian transformers
Pathologies in priors and inference for Bayesian transformers
Tristan Cinquin
Alexander Immer
Max Horn
Vincent Fortuin
UQCVBDLMedIm
117
10
0
08 Oct 2021
De-randomizing MCMC dynamics with the diffusion Stein operator
De-randomizing MCMC dynamics with the diffusion Stein operator
Zheyan Shen
Markus Heinonen
Samuel Kaski
DiffM
42
4
0
07 Oct 2021
Sparse MoEs meet Efficient Ensembles
Sparse MoEs meet Efficient Ensembles
J. Allingham
F. Wenzel
Zelda E. Mariet
Basil Mustafa
J. Puigcerver
...
Balaji Lakshminarayanan
Jasper Snoek
Dustin Tran
Carlos Riquelme Ruiz
Rodolphe Jenatton
MoE
83
21
0
07 Oct 2021
Propagating State Uncertainty Through Trajectory Forecasting
Propagating State Uncertainty Through Trajectory Forecasting
Boris Ivanovic
Yifeng Lin
Shubham Shrivastava
Punarjay Chakravarty
Marco Pavone
149
19
0
07 Oct 2021
An Uncertainty-aware Loss Function for Training Neural Networks with
  Calibrated Predictions
An Uncertainty-aware Loss Function for Training Neural Networks with Calibrated Predictions
Afshar Shamsi
Hamzeh Asgharnezhad
AmirReza Tajally
Saeid Nahavandi
Henry Leung
UQCV
85
8
0
07 Oct 2021
Prior and Posterior Networks: A Survey on Evidential Deep Learning
  Methods For Uncertainty Estimation
Prior and Posterior Networks: A Survey on Evidential Deep Learning Methods For Uncertainty Estimation
Dennis Ulmer
Christian Hardmeier
J. Frellsen
BDLUQCVUDEDLPER
150
55
0
06 Oct 2021
Probabilistic Metamodels for an Efficient Characterization of Complex
  Driving Scenarios
Probabilistic Metamodels for an Efficient Characterization of Complex Driving Scenarios
Max Winkelmann
Mike Kohlhoff
H. Tadjine
Steffen Müller
54
9
0
06 Oct 2021
Deep Classifiers with Label Noise Modeling and Distance Awareness
Deep Classifiers with Label Noise Modeling and Distance Awareness
Vincent Fortuin
Mark Collier
F. Wenzel
J. Allingham
J. Liu
Dustin Tran
Balaji Lakshminarayanan
Jesse Berent
Rodolphe Jenatton
E. Kokiopoulou
UQCV
78
11
0
06 Oct 2021
See Yourself in Others: Attending Multiple Tasks for Own Failure
  Detection
See Yourself in Others: Attending Multiple Tasks for Own Failure Detection
Bo Sun
Jiaxu Xing
Hermann Blum
Roland Siegwart
Cesar Cadena
101
12
0
06 Oct 2021
Previous
123...424344...636465
Next