ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.01474
  4. Cited By
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
v1v2v3 (latest)

Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles

5 December 2016
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
    UQCVBDL
ArXiv (abs)PDFHTML

Papers citing "Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles"

50 / 3,224 papers shown
Title
Faithful Heteroscedastic Regression with Neural Networks
Faithful Heteroscedastic Regression with Neural Networks
Andrew Stirn
H. Wessels
Megan D. Schertzer
L. Pereira
Neville E. Sanjana
David A. Knowles
UQCV
114
18
0
18 Dec 2022
Convergence Analysis for Training Stochastic Neural Networks via
  Stochastic Gradient Descent
Convergence Analysis for Training Stochastic Neural Networks via Stochastic Gradient Descent
Richard Archibald
F. Bao
Yanzhao Cao
Hui‐Jie Sun
99
2
0
17 Dec 2022
Bayesian posterior approximation with stochastic ensembles
Bayesian posterior approximation with stochastic ensembles
Oleksandr Balabanov
Bernhard Mehlig
Hampus Linander
BDLUQCV
120
5
0
15 Dec 2022
Scalable Bayesian Uncertainty Quantification for Neural Network
  Potentials: Promise and Pitfalls
Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls
Stephan Thaler
Gregor Doehner
Julija Zavadlav
109
21
0
15 Dec 2022
Post-hoc Uncertainty Learning using a Dirichlet Meta-Model
Post-hoc Uncertainty Learning using a Dirichlet Meta-Model
Maohao Shen
Yuheng Bu
P. Sattigeri
S. Ghosh
Subhro Das
G. Wornell
UQCVOODBDL
50
34
0
14 Dec 2022
Learning useful representations for shifting tasks and distributions
Learning useful representations for shifting tasks and distributions
Jianyu Zhang
Léon Bottou
OOD
76
14
0
14 Dec 2022
Uncertainty Quantification for Deep Neural Networks: An Empirical
  Comparison and Usage Guidelines
Uncertainty Quantification for Deep Neural Networks: An Empirical Comparison and Usage Guidelines
Michael Weiss
Paolo Tonella
BDLUQCV
76
11
0
14 Dec 2022
Deep Negative Correlation Classification
Deep Negative Correlation Classification
Le Zhang
Qibin Hou
Yun-Hai Liu
Jiawang Bian
Xun Xu
Qiufeng Wang
Ce Zhu
60
1
0
14 Dec 2022
Learning Robotic Navigation from Experience: Principles, Methods, and
  Recent Results
Learning Robotic Navigation from Experience: Principles, Methods, and Recent Results
Sergey Levine
Dhruv Shah
SSL
93
23
0
13 Dec 2022
AdvMIL: Adversarial Multiple Instance Learning for the Survival Analysis
  on Whole-Slide Images
AdvMIL: Adversarial Multiple Instance Learning for the Survival Analysis on Whole-Slide Images
Pei Liu
Luping Ji
Feng Ye
Bo Fu
76
29
0
13 Dec 2022
Solving Sample-Level Out-of-Distribution Detection on 3D Medical Images
Daria Frolova
A. Vasiliuk
Mikhail Belyaev
B. Shirokikh
OOD
81
1
0
13 Dec 2022
Pixel is All You Need: Adversarial Trajectory-Ensemble Active Learning
  for Salient Object Detection
Pixel is All You Need: Adversarial Trajectory-Ensemble Active Learning for Salient Object Detection
Zhenyu Wu
Lin Wang
Wen Wang
Qing Xia
Chenglizhao Chen
Aimin Hao
Shuo Li
AAML
108
5
0
13 Dec 2022
Dual Accuracy-Quality-Driven Neural Network for Prediction Interval
  Generation
Dual Accuracy-Quality-Driven Neural Network for Prediction Interval Generation
Giorgio Morales
John W. Sheppard
79
5
0
13 Dec 2022
An Exploratory Study of AI System Risk Assessment from the Lens of Data
  Distribution and Uncertainty
An Exploratory Study of AI System Risk Assessment from the Lens of Data Distribution and Uncertainty
Zhijie Wang
Yuheng Huang
Lei Ma
Haruki Yokoyama
Susumu Tokumoto
Kazuki Munakata
66
4
0
13 Dec 2022
Efficient Bayesian Uncertainty Estimation for nnU-Net
Efficient Bayesian Uncertainty Estimation for nnU-Net
Yidong Zhao
Changchun Yang
Artur M. Schweidtmann
Qian Tao
UQCVBDL
62
22
0
12 Dec 2022
Selective classification using a robust meta-learning approach
Selective classification using a robust meta-learning approach
Nishant Jain
Karthikeyan Shanmugam
Pradeep Shenoy
OOD
85
2
0
12 Dec 2022
Real-World Compositional Generalization with Disentangled
  Sequence-to-Sequence Learning
Real-World Compositional Generalization with Disentangled Sequence-to-Sequence Learning
Hao Zheng
Mirella Lapata
OODCoGeDRL
64
5
0
12 Dec 2022
Client Selection for Federated Bayesian Learning
Client Selection for Federated Bayesian Learning
Jiarong Yang
Yuan Liu
Rahif Kassab
FedML
75
12
0
11 Dec 2022
Reliable Multimodal Trajectory Prediction via Error Aligned Uncertainty
  Optimization
Reliable Multimodal Trajectory Prediction via Error Aligned Uncertainty Optimization
Neslihan Kose
R. Krishnan
Akash Dhamasia
Omesh Tickoo
Michael Paulitsch
63
1
0
09 Dec 2022
PATO: Policy Assisted TeleOperation for Scalable Robot Data Collection
PATO: Policy Assisted TeleOperation for Scalable Robot Data Collection
Shivin Dass
Karl Pertsch
Hejia Zhang
Youngwoon Lee
Joseph J. Lim
Stefanos Nikolaidis
91
15
0
09 Dec 2022
MixBoost: Improving the Robustness of Deep Neural Networks by Boosting
  Data Augmentation
MixBoost: Improving the Robustness of Deep Neural Networks by Boosting Data Augmentation
Zhendong Liu
Wenyu Jiang
Min Guo
Chongjun Wang
AAML
76
1
0
08 Dec 2022
Copula Conformal Prediction for Multi-step Time Series Forecasting
Copula Conformal Prediction for Multi-step Time Series Forecasting
S. Sun
Rose Yu
AI4TS
197
22
0
06 Dec 2022
A Learning Based Hypothesis Test for Harmful Covariate Shift
A Learning Based Hypothesis Test for Harmful Covariate Shift
T. Ginsberg
Zhongyuan Liang
Rahul G. Krishnan
90
14
0
06 Dec 2022
Improving Zero-shot Generalization and Robustness of Multi-modal Models
Improving Zero-shot Generalization and Robustness of Multi-modal Models
Yunhao Ge
Jie Jessie Ren
Andrew Gallagher
Yuxiao Wang
Ming-Hsuan Yang
Hartwig Adam
Laurent Itti
Balaji Lakshminarayanan
Jiaping Zhao
VLM
111
37
0
04 Dec 2022
Calibration and generalizability of probabilistic models on low-data
  chemical datasets with DIONYSUS
Calibration and generalizability of probabilistic models on low-data chemical datasets with DIONYSUS
Gary Tom
Riley J. Hickman
Aniket N. Zinzuwadia
A. Mohajeri
Benjamín Sánchez-Lengeling
A. Aspuru‐Guzik
84
17
0
03 Dec 2022
Investigating Deep Learning Model Calibration for Classification
  Problems in Mechanics
Investigating Deep Learning Model Calibration for Classification Problems in Mechanics
S. Mohammadzadeh
Peerasait Prachaseree
Emma Lejeune
AI4CE
69
3
0
01 Dec 2022
Multi-rater Prism: Learning self-calibrated medical image segmentation
  from multiple raters
Multi-rater Prism: Learning self-calibrated medical image segmentation from multiple raters
Junde Wu
Huihui Fang
Yehui Yang
Yuanpei Liu
Jing Gao
Lixin Duan
Weihua Yang
Yanwu Xu
66
2
0
01 Dec 2022
Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images
Meng Wang
Kai-An Yu
Chun-Mei Feng
K. Zou
Yanyu Xu
Qingquan Meng
Rick Siow Mong Goh
Yong Liu
Huazhu Fu
MedIm
93
3
0
01 Dec 2022
VI-PINNs: Variance-involved Physics-informed Neural Networks for Fast
  and Accurate Prediction of Partial Differential Equations
VI-PINNs: Variance-involved Physics-informed Neural Networks for Fast and Accurate Prediction of Partial Differential Equations
Bin Shan
Ye Li
Sheng-Jun Huang
PINN
82
3
0
30 Nov 2022
Birds of a Feather Trust Together: Knowing When to Trust a Classifier
  via Adaptive Neighborhood Aggregation
Birds of a Feather Trust Together: Knowing When to Trust a Classifier via Adaptive Neighborhood Aggregation
Miao Xiong
Shen Li
Wenjie Feng
Ailin Deng
Jihai Zhang
Bryan Hooi
62
7
0
29 Nov 2022
The Effectiveness of World Models for Continual Reinforcement Learning
The Effectiveness of World Models for Continual Reinforcement Learning
Samuel Kessler
M. Ostaszewski
Michal Bortkiewicz
M. Żarski
Maciej Wołczyk
Jack Parker-Holder
Stephen J. Roberts
Piotr Milo's
KELMOffRLCLL
85
8
0
29 Nov 2022
Contrastive Novelty-Augmented Learning: Anticipating Outliers with Large
  Language Models
Contrastive Novelty-Augmented Learning: Anticipating Outliers with Large Language Models
Albert Xu
Xiang Ren
Robin Jia
OODD
72
2
0
28 Nov 2022
A Call to Reflect on Evaluation Practices for Failure Detection in Image
  Classification
A Call to Reflect on Evaluation Practices for Failure Detection in Image Classification
Paul F. Jaeger
Carsten T. Lüth
Lukas Klein
Till J. Bungert
UQCV
103
38
0
28 Nov 2022
What's Behind the Mask: Estimating Uncertainty in Image-to-Image
  Problems
What's Behind the Mask: Estimating Uncertainty in Image-to-Image Problems
Gilad Kutiel
Regev Cohen
Michael Elad
Daniel Freedman
UQCV
106
5
0
28 Nov 2022
Looking at the posterior: accuracy and uncertainty of neural-network
  predictions
Looking at the posterior: accuracy and uncertainty of neural-network predictions
Hampus Linander
Oleksandr Balabanov
Henry Yang
Bernhard Mehlig
UQCVUDBDL
80
2
0
26 Nov 2022
Distribution Free Prediction Sets for Node Classification
Distribution Free Prediction Sets for Node Classification
J. Clarkson
AI4CE
125
25
0
26 Nov 2022
Ensemble Multi-Quantiles: Adaptively Flexible Distribution Prediction
  for Uncertainty Quantification
Ensemble Multi-Quantiles: Adaptively Flexible Distribution Prediction for Uncertainty Quantification
Xing Yan
Yonghua Su
Wenxuan Ma
UQCV
95
2
0
26 Nov 2022
Residual Pattern Learning for Pixel-wise Out-of-Distribution Detection
  in Semantic Segmentation
Residual Pattern Learning for Pixel-wise Out-of-Distribution Detection in Semantic Segmentation
Yuyuan Liu
Choubo Ding
Yu Tian
Guansong Pang
Vasileios Belagiannis
Ian Reid
G. Carneiro
OODD
112
40
0
26 Nov 2022
RbA: Segmenting Unknown Regions Rejected by All
RbA: Segmenting Unknown Regions Rejected by All
Nazir Nayal
Mısra Yavuz
João F. Henriques
Fatma Guney
UQCV
99
47
0
25 Nov 2022
An Ensemble-Based Deep Framework for Estimating Thermo-Chemical State
  Variables from Flamelet Generated Manifolds
An Ensemble-Based Deep Framework for Estimating Thermo-Chemical State Variables from Flamelet Generated Manifolds
A. Salunkhe
G. Georgalis
A. Patra
V. Chandola
48
1
0
25 Nov 2022
Learning-enhanced Nonlinear Model Predictive Control using
  Knowledge-based Neural Ordinary Differential Equations and Deep Ensembles
Learning-enhanced Nonlinear Model Predictive Control using Knowledge-based Neural Ordinary Differential Equations and Deep Ensembles
K. Y. Chee
M. Hsieh
Nikolai Matni
83
3
0
24 Nov 2022
Estimating Regression Predictive Distributions with Sample Networks
Estimating Regression Predictive Distributions with Sample Networks
Ali Harakeh
Jordan S. K. Hu
Naiqing Guan
Steven L. Waslander
Liam Paull
BDLUQCV
46
4
0
24 Nov 2022
Estimating Conditional Distributions with Neural Networks using R
  package deeptrafo
Estimating Conditional Distributions with Neural Networks using R package deeptrafo
Lucas Kook
Philipp F. M. Baumann
Oliver Durr
Beate Sick
David Rügamer
66
6
0
24 Nov 2022
Improving Multi-task Learning via Seeking Task-based Flat Regions
Improving Multi-task Learning via Seeking Task-based Flat Regions
Hoang Phan
Lam C. Tran
Ngoc N. Tran
Nhat Ho
Tuan Truong
Qi Lei
Nhat Ho
Dinh Q. Phung
Trung Le
211
11
0
24 Nov 2022
Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection
  Tasks
Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks
Neil Band
Tim G. J. Rudner
Qixuan Feng
Angelos Filos
Zachary Nado
Michael W. Dusenberry
Ghassen Jerfel
Dustin Tran
Y. Gal
OODUQCVBDL
57
54
0
23 Nov 2022
FRE: A Fast Method For Anomaly Detection And Segmentation
FRE: A Fast Method For Anomaly Detection And Segmentation
I. Ndiour
Nilesh A. Ahuja
Ergin Utku Genc
Omesh Tickoo
103
3
0
23 Nov 2022
Clarity: an improved gradient method for producing quality visual
  counterfactual explanations
Clarity: an improved gradient method for producing quality visual counterfactual explanations
Claire Theobald
Frédéric Pennerath
Brieuc Conan-Guez
Miguel Couceiro
Amedeo Napoli
BDL
90
1
0
22 Nov 2022
PartAL: Efficient Partial Active Learning in Multi-Task Visual Settings
PartAL: Efficient Partial Active Learning in Multi-Task Visual Settings
Nikita Durasov
Nik Dorndorf
Pascal Fua
VLM
67
5
0
21 Nov 2022
ZigZag: Universal Sampling-free Uncertainty Estimation Through Two-Step
  Inference
ZigZag: Universal Sampling-free Uncertainty Estimation Through Two-Step Inference
Nikita Durasov
Nik Dorndorf
Hieu M. Le
Pascal Fua
UQCV
91
10
0
21 Nov 2022
Non-reversible Parallel Tempering for Deep Posterior Approximation
Non-reversible Parallel Tempering for Deep Posterior Approximation
Wei Deng
Qian Zhang
Qi Feng
F. Liang
Guang Lin
76
4
0
20 Nov 2022
Previous
123...293031...636465
Next