ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.00410
  4. Cited By
Deep Variational Information Bottleneck

Deep Variational Information Bottleneck

1 December 2016
Alexander A. Alemi
Ian S. Fischer
Joshua V. Dillon
Kevin Patrick Murphy
ArXivPDFHTML

Papers citing "Deep Variational Information Bottleneck"

50 / 348 papers shown
Title
Measuring the Biases and Effectiveness of Content-Style Disentanglement
Measuring the Biases and Effectiveness of Content-Style Disentanglement
Xiao Liu
Spyridon Thermos
Gabriele Valvano
A. Chartsias
Alison Q. OÑeil
Sotirios A. Tsaftaris
CoGe
DRL
34
18
0
27 Aug 2020
Whitening and second order optimization both make information in the
  dataset unusable during training, and can reduce or prevent generalization
Whitening and second order optimization both make information in the dataset unusable during training, and can reduce or prevent generalization
Neha S. Wadia
Daniel Duckworth
S. Schoenholz
Ethan Dyer
Jascha Narain Sohl-Dickstein
31
13
0
17 Aug 2020
Evaluating Lossy Compression Rates of Deep Generative Models
Evaluating Lossy Compression Rates of Deep Generative Models
Sicong Huang
Alireza Makhzani
Yanshuai Cao
Roger C. Grosse
EGVM
DRL
8
27
0
15 Aug 2020
When is invariance useful in an Out-of-Distribution Generalization
  problem ?
When is invariance useful in an Out-of-Distribution Generalization problem ?
Masanori Koyama
Shoichiro Yamaguchi
OOD
36
65
0
04 Aug 2020
Improving Generalization in Meta-learning via Task Augmentation
Improving Generalization in Meta-learning via Task Augmentation
Huaxiu Yao
Long-Kai Huang
Linjun Zhang
Ying Wei
Li Tian
James Zou
Junzhou Huang
Z. Li
50
81
0
26 Jul 2020
End-to-end Learning of Compressible Features
End-to-end Learning of Compressible Features
Saurabh Singh
Sami Abu-El-Haija
Nick Johnston
Johannes Ballé
Abhinav Shrivastava
G. Toderici
SSL
99
71
0
23 Jul 2020
Adversarial Training Reduces Information and Improves Transferability
Adversarial Training Reduces Information and Improves Transferability
M. Terzi
Alessandro Achille
Marco Maggipinto
Gian Antonio Susto
AAML
24
23
0
22 Jul 2020
Learning to Learn with Variational Information Bottleneck for Domain
  Generalization
Learning to Learn with Variational Information Bottleneck for Domain Generalization
Yingjun Du
Jun Xu
Huan Xiong
Qiang Qiu
Xiantong Zhen
Cees G. M. Snoek
Ling Shao
BDL
OOD
30
164
0
15 Jul 2020
Towards a Theoretical Understanding of the Robustness of Variational
  Autoencoders
Towards a Theoretical Understanding of the Robustness of Variational Autoencoders
A. Camuto
M. Willetts
Stephen J. Roberts
Chris Holmes
Tom Rainforth
AAML
DRL
29
30
0
14 Jul 2020
Efficient Empowerment Estimation for Unsupervised Stabilization
Efficient Empowerment Estimation for Unsupervised Stabilization
Ruihan Zhao
Kevin Lu
Pieter Abbeel
Stas Tiomkin
32
8
0
14 Jul 2020
AUTO3D: Novel view synthesis through unsupervisely learned variational
  viewpoint and global 3D representation
AUTO3D: Novel view synthesis through unsupervisely learned variational viewpoint and global 3D representation
Xiaofeng Liu
Tong Che
Yiqun Lu
Chao Yang
Site Li
J. You
3DV
48
21
0
13 Jul 2020
Meta-Learning Requires Meta-Augmentation
Meta-Learning Requires Meta-Augmentation
Janarthanan Rajendran
A. Irpan
Eric Jang
29
93
0
10 Jul 2020
Robust Classification under Class-Dependent Domain Shift
Robust Classification under Class-Dependent Domain Shift
T. Galstyan
Hrant Khachatrian
Greg Ver Steeg
Aram Galstyan
OOD
16
2
0
10 Jul 2020
Auxiliary Learning by Implicit Differentiation
Auxiliary Learning by Implicit Differentiation
Aviv Navon
Idan Achituve
Haggai Maron
Gal Chechik
Ethan Fetaya
33
59
0
22 Jun 2020
Contrastive Learning for Weakly Supervised Phrase Grounding
Contrastive Learning for Weakly Supervised Phrase Grounding
Tanmay Gupta
Arash Vahdat
Gal Chechik
Xiaodong Yang
Jan Kautz
Derek Hoiem
ObjD
SSL
44
141
0
17 Jun 2020
Density of States Estimation for Out-of-Distribution Detection
Density of States Estimation for Out-of-Distribution Detection
Warren Morningstar
Cusuh Ham
Andrew Gallagher
Balaji Lakshminarayanan
Alexander A. Alemi
Joshua V. Dillon
OODD
24
84
0
16 Jun 2020
Learning the Redundancy-free Features for Generalized Zero-Shot Object
  Recognition
Learning the Redundancy-free Features for Generalized Zero-Shot Object Recognition
Zongyan Han
Zhenyong Fu
Jian Yang
23
86
0
16 Jun 2020
Kernelized information bottleneck leads to biologically plausible
  3-factor Hebbian learning in deep networks
Kernelized information bottleneck leads to biologically plausible 3-factor Hebbian learning in deep networks
Roman Pogodin
P. Latham
27
34
0
12 Jun 2020
A Variational Approach to Privacy and Fairness
A Variational Approach to Privacy and Fairness
Borja Rodríguez Gálvez
Ragnar Thobaben
Mikael Skoglund
FaML
DRL
19
25
0
11 Jun 2020
On the Maximum Mutual Information Capacity of Neural Architectures
On the Maximum Mutual Information Capacity of Neural Architectures
Brandon Foggo
Nan Yu
TPM
29
3
0
10 Jun 2020
Probabilistic Autoencoder
Probabilistic Autoencoder
Vanessa Böhm
U. Seljak
UQCV
BDL
DRL
24
32
0
09 Jun 2020
Interpretable Deep Graph Generation with Node-Edge Co-Disentanglement
Interpretable Deep Graph Generation with Node-Edge Co-Disentanglement
Xiaojie Guo
Liang Zhao
Zhao Qin
Lingfei Wu
Amarda Shehu
Yanfang Ye
CoGe
DRL
43
46
0
09 Jun 2020
What Makes for Good Views for Contrastive Learning?
What Makes for Good Views for Contrastive Learning?
Yonglong Tian
Chen Sun
Ben Poole
Dilip Krishnan
Cordelia Schmid
Phillip Isola
SSL
39
1,308
0
20 May 2020
Learning and Inference in Imaginary Noise Models
Learning and Inference in Imaginary Noise Models
Saeed Saremi
BDL
DRL
11
2
0
18 May 2020
Robust Training of Vector Quantized Bottleneck Models
Robust Training of Vector Quantized Bottleneck Models
A. Lancucki
J. Chorowski
Guillaume Sanchez
R. Marxer
Nanxin Chen
Hans J. G. A. Dolfing
Sameer Khurana
Tanel Alumäe
Antoine Laurent
29
58
0
18 May 2020
Attentional Bottleneck: Towards an Interpretable Deep Driving Network
Attentional Bottleneck: Towards an Interpretable Deep Driving Network
Jinkyu Kim
Mayank Bansal
27
13
0
08 May 2020
Mutual Information Gradient Estimation for Representation Learning
Mutual Information Gradient Estimation for Representation Learning
Liangjiang Wen
Yiji Zhou
Lirong He
Mingyuan Zhou
Zenglin Xu
DRL
SSL
33
27
0
03 May 2020
A Batch Normalized Inference Network Keeps the KL Vanishing Away
A Batch Normalized Inference Network Keeps the KL Vanishing Away
Qile Zhu
Jianlin Su
Wei Bi
Xiaojiang Liu
Xiyao Ma
Xiaolin Li
D. Wu
BDL
DRL
42
61
0
27 Apr 2020
Generating Tertiary Protein Structures via an Interpretative Variational
  Autoencoder
Generating Tertiary Protein Structures via an Interpretative Variational Autoencoder
Xiaojie Guo
Yuanqi Du
Sivani Tadepalli
Liang Zhao
Amarda Shehu
DRL
30
26
0
08 Apr 2020
Learning Agile Robotic Locomotion Skills by Imitating Animals
Learning Agile Robotic Locomotion Skills by Imitating Animals
Xue Bin Peng
Erwin Coumans
Tingnan Zhang
T. Lee
Jie Tan
Sergey Levine
34
499
0
02 Apr 2020
Unpacking Information Bottlenecks: Unifying Information-Theoretic
  Objectives in Deep Learning
Unpacking Information Bottlenecks: Unifying Information-Theoretic Objectives in Deep Learning
Andreas Kirsch
Clare Lyle
Y. Gal
27
16
0
27 Mar 2020
On Information Plane Analyses of Neural Network Classifiers -- A Review
On Information Plane Analyses of Neural Network Classifiers -- A Review
Bernhard C. Geiger
32
50
0
21 Mar 2020
ROMA: Multi-Agent Reinforcement Learning with Emergent Roles
ROMA: Multi-Agent Reinforcement Learning with Emergent Roles
Tonghan Wang
Heng Dong
V. Lesser
Chongjie Zhang
57
212
0
18 Mar 2020
What Information Does a ResNet Compress?
What Information Does a ResNet Compress?
L. N. Darlow
Amos Storkey
SSL
32
11
0
13 Mar 2020
Continuous Domain Adaptation with Variational Domain-Agnostic Feature
  Replay
Continuous Domain Adaptation with Variational Domain-Agnostic Feature Replay
Qicheng Lao
Xiang Jiang
Mohammad Havaei
Yoshua Bengio
VLM
23
33
0
09 Mar 2020
The Variational InfoMax Learning Objective
The Variational InfoMax Learning Objective
Vincenzo Crescimanna
Bruce P. Graham
23
0
0
07 Mar 2020
NestedVAE: Isolating Common Factors via Weak Supervision
NestedVAE: Isolating Common Factors via Weak Supervision
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
DRL
26
21
0
26 Feb 2020
CEB Improves Model Robustness
CEB Improves Model Robustness
Ian S. Fischer
Alexander A. Alemi
AAML
19
28
0
13 Feb 2020
The Conditional Entropy Bottleneck
The Conditional Entropy Bottleneck
Ian S. Fischer
OOD
29
116
0
13 Feb 2020
Deep Representation Learning in Speech Processing: Challenges, Recent
  Advances, and Future Trends
Deep Representation Learning in Speech Processing: Challenges, Recent Advances, and Future Trends
S. Latif
R. Rana
Sara Khalifa
Raja Jurdak
Junaid Qadir
Björn W. Schuller
AI4TS
37
81
0
02 Jan 2020
Independence Promoted Graph Disentangled Networks
Independence Promoted Graph Disentangled Networks
Yanbei Liu
Tianlin Li
Shu Wu
Zhitao Xiao
30
94
0
26 Nov 2019
Improving Unsupervised Domain Adaptation with Variational Information
  Bottleneck
Improving Unsupervised Domain Adaptation with Variational Information Bottleneck
Yuxuan Song
Lantao Yu
Zhangjie Cao
Zhiming Zhou
Jian Shen
Shuo Shao
Weinan Zhang
Yong Yu
31
17
0
21 Nov 2019
Information in Infinite Ensembles of Infinitely-Wide Neural Networks
Information in Infinite Ensembles of Infinitely-Wide Neural Networks
Ravid Shwartz-Ziv
Alexander A. Alemi
27
21
0
20 Nov 2019
Learning Representations in Reinforcement Learning:An Information
  Bottleneck Approach
Learning Representations in Reinforcement Learning:An Information Bottleneck Approach
Yingjun Pei
Xinwen Hou
SSL
39
10
0
12 Nov 2019
Disentangle, align and fuse for multimodal and semi-supervised image
  segmentation
Disentangle, align and fuse for multimodal and semi-supervised image segmentation
A. Chartsias
G. Papanastasiou
Chengjia Wang
S. Semple
D. Newby
R. Dharmakumar
Sotirios A. Tsaftaris
24
13
0
11 Nov 2019
Enhancing VAEs for Collaborative Filtering: Flexible Priors & Gating
  Mechanisms
Enhancing VAEs for Collaborative Filtering: Flexible Priors & Gating Mechanisms
Daeryong Kim
B. Suh
24
50
0
03 Nov 2019
Understanding the Limitations of Variational Mutual Information
  Estimators
Understanding the Limitations of Variational Mutual Information Estimators
Jiaming Song
Stefano Ermon
SSL
DRL
25
202
0
14 Oct 2019
Learning Nearly Decomposable Value Functions Via Communication
  Minimization
Learning Nearly Decomposable Value Functions Via Communication Minimization
Tonghan Wang
Jianhao Wang
Chongyi Zheng
Chongjie Zhang
23
133
0
11 Oct 2019
Predicting with High Correlation Features
Predicting with High Correlation Features
Devansh Arpit
Caiming Xiong
R. Socher
OODD
OOD
19
7
0
01 Oct 2019
Multi-mapping Image-to-Image Translation via Learning Disentanglement
Multi-mapping Image-to-Image Translation via Learning Disentanglement
Xiaoming Yu
Yuanqi Chen
Thomas H. Li
Shan Liu
Ge Li
DRL
25
104
0
17 Sep 2019
Previous
1234567
Next