ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.00410
  4. Cited By
Deep Variational Information Bottleneck

Deep Variational Information Bottleneck

1 December 2016
Alexander A. Alemi
Ian S. Fischer
Joshua V. Dillon
Kevin Patrick Murphy
ArXivPDFHTML

Papers citing "Deep Variational Information Bottleneck"

50 / 348 papers shown
Title
Meta-learning Amidst Heterogeneity and Ambiguity
Meta-learning Amidst Heterogeneity and Ambiguity
Kyeongryeol Go
Seyoung Yun
39
1
0
05 Jul 2021
Unsupervised Skill Discovery with Bottleneck Option Learning
Unsupervised Skill Discovery with Bottleneck Option Learning
Jaekyeom Kim
Seohong Park
Gunhee Kim
32
32
0
27 Jun 2021
Projection-wise Disentangling for Fair and Interpretable Representation
  Learning: Application to 3D Facial Shape Analysis
Projection-wise Disentangling for Fair and Interpretable Representation Learning: Application to 3D Facial Shape Analysis
Xianjing Liu
Bo-wen Li
Esther E. Bron
W. Niessen
E. Wolvius
Gennady Roshchupkin
CVBM
32
9
0
25 Jun 2021
KL Guided Domain Adaptation
KL Guided Domain Adaptation
A. Nguyen
Toan M. Tran
Y. Gal
Philip Torr
A. G. Baydin
OOD
36
39
0
14 Jun 2021
Invariance Principle Meets Information Bottleneck for
  Out-of-Distribution Generalization
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization
Kartik Ahuja
Ethan Caballero
Dinghuai Zhang
Jean-Christophe Gagnon-Audet
Yoshua Bengio
Ioannis Mitliagkas
Irina Rish
OOD
15
253
0
11 Jun 2021
Invariant Information Bottleneck for Domain Generalization
Invariant Information Bottleneck for Domain Generalization
Bo-wen Li
Yifei Shen
Yezhen Wang
Wenzhen Zhu
Colorado Reed
Jun Zhang
Dongsheng Li
Kurt Keutzer
Han Zhao
OOD
37
106
0
11 Jun 2021
An Information-theoretic Approach to Distribution Shifts
An Information-theoretic Approach to Distribution Shifts
Marco Federici
Ryota Tomioka
Patrick Forré
OOD
49
18
0
07 Jun 2021
Learning to Time-Decode in Spiking Neural Networks Through the
  Information Bottleneck
Learning to Time-Decode in Spiking Neural Networks Through the Information Bottleneck
N. Skatchkovsky
Osvaldo Simeone
Hyeryung Jang
38
20
0
02 Jun 2021
Stochastic-Shield: A Probabilistic Approach Towards Training-Free
  Adversarial Defense in Quantized CNNs
Stochastic-Shield: A Probabilistic Approach Towards Training-Free Adversarial Defense in Quantized CNNs
Lorena Qendro
Sangwon Ha
R. D. Jong
Partha P. Maji
AAML
FedML
MQ
21
7
0
13 May 2021
Unsupervised Hashing with Contrastive Information Bottleneck
Unsupervised Hashing with Contrastive Information Bottleneck
Zexuan Qiu
Qinliang Su
Zijing Ou
Jianxing Yu
Changyou Chen
SSL
17
84
0
13 May 2021
Data Augmentation in High Dimensional Low Sample Size Setting Using a
  Geometry-Based Variational Autoencoder
Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Clément Chadebec
Elina Thibeau-Sutre
Ninon Burgos
S. Allassonnière
48
63
0
30 Apr 2021
Rapid Exploration for Open-World Navigation with Latent Goal Models
Rapid Exploration for Open-World Navigation with Latent Goal Models
Dhruv Shah
Benjamin Eysenbach
G. Kahn
Nicholas Rhinehart
Sergey Levine
32
70
0
12 Apr 2021
Information-theoretic regularization for Multi-source Domain Adaptation
Information-theoretic regularization for Multi-source Domain Adaptation
Geon Yeong Park
Sang Wan Lee
TTA
27
25
0
04 Apr 2021
Explaining COVID-19 and Thoracic Pathology Model Predictions by
  Identifying Informative Input Features
Explaining COVID-19 and Thoracic Pathology Model Predictions by Identifying Informative Input Features
Ashkan Khakzar
Yang Zhang
W. Mansour
Yuezhi Cai
Yawei Li
Yucheng Zhang
Seong Tae Kim
Nassir Navab
FAtt
52
17
0
01 Apr 2021
von Mises-Fisher Loss: An Exploration of Embedding Geometries for
  Supervised Learning
von Mises-Fisher Loss: An Exploration of Embedding Geometries for Supervised Learning
Tyler R. Scott
Andrew C. Gallagher
Michael C. Mozer
29
39
0
29 Mar 2021
Explaining Representation by Mutual Information
Explaining Representation by Mutual Information
Li Gu
SSL
FAtt
37
0
0
28 Mar 2021
Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware
  Regression
Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware Regression
Wanhua Li
Xiaoke Huang
Jiwen Lu
Jianjiang Feng
Jie Zhou
UQCV
34
62
0
25 Mar 2021
Information-based Disentangled Representation Learning for Unsupervised
  MR Harmonization
Information-based Disentangled Representation Learning for Unsupervised MR Harmonization
Lianrui Zuo
Blake E. Dewey
A. Carass
Yihao Liu
Yufan He
P. Calabresi
Jerry L. Prince
29
37
0
24 Mar 2021
Adversarial and Contrastive Variational Autoencoder for Sequential
  Recommendation
Adversarial and Contrastive Variational Autoencoder for Sequential Recommendation
Zhe Xie
Chengxuan Liu
Yichi Zhang
Hongtao Lu
Dong Wang
Yue Ding
BDL
DRL
36
91
0
19 Mar 2021
Boosting Semi-supervised Image Segmentation with Global and Local Mutual
  Information Regularization
Boosting Semi-supervised Image Segmentation with Global and Local Mutual Information Regularization
Jizong Peng
M. Pedersoli
Christian Desrosiers
SSL
27
21
0
08 Mar 2021
Towards Evaluating the Robustness of Deep Diagnostic Models by
  Adversarial Attack
Towards Evaluating the Robustness of Deep Diagnostic Models by Adversarial Attack
Mengting Xu
Tao Zhang
Zhongnian Li
Mingxia Liu
Daoqiang Zhang
AAML
OOD
MedIm
33
41
0
05 Mar 2021
Towards Building A Group-based Unsupervised Representation
  Disentanglement Framework
Towards Building A Group-based Unsupervised Representation Disentanglement Framework
Tao Yang
Xuanchi Ren
Yuwang Wang
W. Zeng
Nanning Zheng
CoGe
DRL
24
27
0
20 Feb 2021
Learning Invariant Representations using Inverse Contrastive Loss
Learning Invariant Representations using Inverse Contrastive Loss
A. K. Akash
Vishnu Suresh Lokhande
Sathya Ravi
Vikas Singh
SSL
21
8
0
16 Feb 2021
Scalable Vector Gaussian Information Bottleneck
Scalable Vector Gaussian Information Bottleneck
Mohammad Mahdi Mahvari
M. Kobayashi
Milad Sefidgaran
19
2
0
15 Feb 2021
Information flows of diverse autoencoders
Information flows of diverse autoencoders
Sungyeop Lee
Junghyo Jo
24
11
0
15 Feb 2021
A Provably Convergent Information Bottleneck Solution via ADMM
A Provably Convergent Information Bottleneck Solution via ADMM
Tengfei Huang
Aly El Gamal
25
6
0
09 Feb 2021
Learning Task-Oriented Communication for Edge Inference: An Information
  Bottleneck Approach
Learning Task-Oriented Communication for Edge Inference: An Information Bottleneck Approach
Jiawei Shao
Yuyi Mao
Jun Zhang
52
212
0
08 Feb 2021
A Variational Information Bottleneck Approach to Multi-Omics Data
  Integration
A Variational Information Bottleneck Approach to Multi-Omics Data Integration
Changhee Lee
M. Schaar
DRL
20
74
0
05 Feb 2021
DICE: Diversity in Deep Ensembles via Conditional Redundancy Adversarial
  Estimation
DICE: Diversity in Deep Ensembles via Conditional Redundancy Adversarial Estimation
Alexandre Ramé
Matthieu Cord
FedML
56
51
0
14 Jan 2021
Progressive Interpretation Synthesis: Interpreting Task Solving by
  Quantifying Previously Used and Unused Information
Progressive Interpretation Synthesis: Interpreting Task Solving by Quantifying Previously Used and Unused Information
Zhengqi He
Taro Toyoizumi
19
1
0
08 Jan 2021
Neural Joint Entropy Estimation
Neural Joint Entropy Estimation
Yuval Shalev
Amichai Painsky
I. Ben-Gal
34
8
0
21 Dec 2020
TabTransformer: Tabular Data Modeling Using Contextual Embeddings
TabTransformer: Tabular Data Modeling Using Contextual Embeddings
Xin Huang
A. Khetan
Milan Cvitkovic
Zohar Karnin
ViT
LMTD
157
420
0
11 Dec 2020
MetaInfoNet: Learning Task-Guided Information for Sample Reweighting
MetaInfoNet: Learning Task-Guided Information for Sample Reweighting
Hongxin Wei
Lei Feng
R. Wang
Bo An
NoLa
27
6
0
09 Dec 2020
The Hidden Uncertainty in a Neural Networks Activations
The Hidden Uncertainty in a Neural Networks Activations
Janis Postels
Hermann Blum
Yannick Strümpler
Cesar Cadena
Roland Siegwart
Luc Van Gool
Federico Tombari
UQCV
36
22
0
05 Dec 2020
Free Energy Minimization: A Unified Framework for Modelling, Inference,
  Learning,and Optimization
Free Energy Minimization: A Unified Framework for Modelling, Inference, Learning,and Optimization
Sharu Theresa Jose
Osvaldo Simeone
13
9
0
25 Nov 2020
Behavior Priors for Efficient Reinforcement Learning
Behavior Priors for Efficient Reinforcement Learning
Dhruva Tirumala
Alexandre Galashov
Hyeonwoo Noh
Leonard Hasenclever
Razvan Pascanu
...
Guillaume Desjardins
Wojciech M. Czarnecki
Arun Ahuja
Yee Whye Teh
N. Heess
37
39
0
27 Oct 2020
PAC$^m$-Bayes: Narrowing the Empirical Risk Gap in the Misspecified
  Bayesian Regime
PACm^mm-Bayes: Narrowing the Empirical Risk Gap in the Misspecified Bayesian Regime
Warren Morningstar
Alexander A. Alemi
Joshua V. Dillon
87
16
0
19 Oct 2020
Maximum-Entropy Adversarial Data Augmentation for Improved
  Generalization and Robustness
Maximum-Entropy Adversarial Data Augmentation for Improved Generalization and Robustness
Long Zhao
Ting Liu
Xi Peng
Dimitris N. Metaxas
OOD
AAML
27
165
0
15 Oct 2020
Graph Information Bottleneck for Subgraph Recognition
Graph Information Bottleneck for Subgraph Recognition
Junchi Yu
Tingyang Xu
Yu Rong
Yatao Bian
Junzhou Huang
Ran He
30
153
0
12 Oct 2020
3DMolNet: A Generative Network for Molecular Structures
3DMolNet: A Generative Network for Molecular Structures
V. Nesterov
Mario Wieser
Volker Roth
AI4CE
173
33
0
08 Oct 2020
A Variational Information Bottleneck Based Method to Compress Sequential
  Networks for Human Action Recognition
A Variational Information Bottleneck Based Method to Compress Sequential Networks for Human Action Recognition
Ayush Srivastava
Oshin Dutta
A. Prathosh
Sumeet Agarwal
Jigyasa Gupta
17
8
0
03 Oct 2020
FOCAL: Efficient Fully-Offline Meta-Reinforcement Learning via Distance
  Metric Learning and Behavior Regularization
FOCAL: Efficient Fully-Offline Meta-Reinforcement Learning via Distance Metric Learning and Behavior Regularization
Lanqing Li
Rui Yang
Dijun Luo
OffRL
33
10
0
02 Oct 2020
Learning Variational Word Masks to Improve the Interpretability of
  Neural Text Classifiers
Learning Variational Word Masks to Improve the Interpretability of Neural Text Classifiers
Hanjie Chen
Yangfeng Ji
AAML
VLM
15
63
0
01 Oct 2020
Deep matrix factorizations
Deep matrix factorizations
Pierre De Handschutter
Nicolas Gillis
Xavier Siebert
BDL
32
40
0
01 Oct 2020
Information Obfuscation of Graph Neural Networks
Information Obfuscation of Graph Neural Networks
Peiyuan Liao
Han Zhao
Keyulu Xu
Tommi Jaakkola
Geoffrey J. Gordon
Stefanie Jegelka
Ruslan Salakhutdinov
AAML
23
34
0
28 Sep 2020
Learning Optimal Representations with the Decodable Information
  Bottleneck
Learning Optimal Representations with the Decodable Information Bottleneck
Yann Dubois
Douwe Kiela
D. Schwab
Ramakrishna Vedantam
31
43
0
27 Sep 2020
Variational Disentanglement for Rare Event Modeling
Variational Disentanglement for Rare Event Modeling
Zidi Xiu
Chenyang Tao
M. Gao
Connor Davis
B. Goldstein
Ricardo Henao
CML
DRL
32
6
0
17 Sep 2020
Malicious Network Traffic Detection via Deep Learning: An Information
  Theoretic View
Malicious Network Traffic Detection via Deep Learning: An Information Theoretic View
Erick Galinkin
AAML
15
0
0
16 Sep 2020
Improving Robustness to Model Inversion Attacks via Mutual Information
  Regularization
Improving Robustness to Model Inversion Attacks via Mutual Information Regularization
Tianhao Wang
Yuheng Zhang
R. Jia
30
74
0
11 Sep 2020
Information Theoretic Meta Learning with Gaussian Processes
Information Theoretic Meta Learning with Gaussian Processes
Michalis K. Titsias
Francisco J. R. Ruiz
Sotirios Nikoloutsopoulos
Alexandre Galashov
FedML
33
15
0
07 Sep 2020
Previous
1234567
Next