ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.04273
  4. Cited By
On the Quantitative Analysis of Decoder-Based Generative Models

On the Quantitative Analysis of Decoder-Based Generative Models

14 November 2016
Yuhuai Wu
Yuri Burda
Ruslan Salakhutdinov
Roger C. Grosse
    GAN
ArXivPDFHTML

Papers citing "On the Quantitative Analysis of Decoder-Based Generative Models"

35 / 35 papers shown
Title
Matching aggregate posteriors in the variational autoencoder
Matching aggregate posteriors in the variational autoencoder
Surojit Saha
Sarang Joshi
Ross T. Whitaker
DRL
16
4
0
13 Nov 2023
Steering Language Generation: Harnessing Contrastive Expert Guidance and
  Negative Prompting for Coherent and Diverse Synthetic Data Generation
Steering Language Generation: Harnessing Contrastive Expert Guidance and Negative Prompting for Coherent and Diverse Synthetic Data Generation
Charles OÑeill
Y. Ting 丁
I. Ciucă
Jack Miller
Thang Bui
SyDa
31
1
0
15 Aug 2023
Compositional diversity in visual concept learning
Compositional diversity in visual concept learning
Yanli Zhou
Reuben Feinman
Brenden Lake
CoGe
OCL
24
8
0
30 May 2023
ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images
ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images
Matthew D. Hoffman
T. Le
Pavel Sountsov
Christopher Suter
Ben Lee
Vikash K. Mansinghka
Rif A. Saurous
BDL
24
12
0
27 Oct 2022
Optimization of Annealed Importance Sampling Hyperparameters
Optimization of Annealed Importance Sampling Hyperparameters
Shirin Goshtasbpour
F. Pérez-Cruz
19
1
0
27 Sep 2022
Deterministic Langevin Monte Carlo with Normalizing Flows for Bayesian
  Inference
Deterministic Langevin Monte Carlo with Normalizing Flows for Bayesian Inference
R. Grumitt
B. Dai
U. Seljak
BDL
24
12
0
27 May 2022
Variational Inference with Locally Enhanced Bounds for Hierarchical
  Models
Variational Inference with Locally Enhanced Bounds for Hierarchical Models
Tomas Geffner
Justin Domke
16
5
0
08 Mar 2022
Generative Adversarial Networks and Adversarial Autoencoders: Tutorial
  and Survey
Generative Adversarial Networks and Adversarial Autoencoders: Tutorial and Survey
Benyamin Ghojogh
A. Ghodsi
Fakhri Karray
Mark Crowley
GAN
26
12
0
26 Nov 2021
NEO: Non Equilibrium Sampling on the Orbit of a Deterministic Transform
NEO: Non Equilibrium Sampling on the Orbit of a Deterministic Transform
Achille Thin
Yazid Janati
Sylvain Le Corff
Charles Ollion
Arnaud Doucet
Alain Durmus
Eric Moulines
C. Robert
15
7
0
17 Mar 2021
How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
  and Auditing Generative Models
How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating and Auditing Generative Models
Ahmed Alaa
B. V. Breugel
Evgeny S. Saveliev
M. Schaar
45
186
0
17 Feb 2021
On the Evaluation of Generative Adversarial Networks By Discriminative
  Models
On the Evaluation of Generative Adversarial Networks By Discriminative Models
A. Torfi
Mohammadreza Beyki
Edward A. Fox
EGVM
11
7
0
07 Oct 2020
Failure Modes of Variational Autoencoders and Their Effects on
  Downstream Tasks
Failure Modes of Variational Autoencoders and Their Effects on Downstream Tasks
Yaniv Yacoby
Weiwei Pan
Finale Doshi-Velez
CML
DRL
16
24
0
14 Jul 2020
Pretraining Image Encoders without Reconstruction via Feature Prediction
  Loss
Pretraining Image Encoders without Reconstruction via Feature Prediction Loss
G. Pihlgren
Fredrik Sandin
Marcus Liwicki
8
3
0
16 Mar 2020
Towards GAN Benchmarks Which Require Generalization
Towards GAN Benchmarks Which Require Generalization
Ishaan Gulrajani
Colin Raffel
Luke Metz
11
57
0
10 Jan 2020
Improving Image Autoencoder Embeddings with Perceptual Loss
Improving Image Autoencoder Embeddings with Perceptual Loss
G. Pihlgren
Fredrik Sandin
Marcus Liwicki
17
33
0
10 Jan 2020
Seeing What a GAN Cannot Generate
Seeing What a GAN Cannot Generate
David Bau
Jun-Yan Zhu
Jonas Wulff
William S. Peebles
Hendrik Strobelt
Bolei Zhou
Antonio Torralba
GAN
17
307
0
24 Oct 2019
Prescribed Generative Adversarial Networks
Prescribed Generative Adversarial Networks
Adji Bousso Dieng
Francisco J. R. Ruiz
David M. Blei
Michalis K. Titsias
GAN
DRL
19
61
0
09 Oct 2019
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural
  Transport
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport
Matthew Hoffman
Pavel Sountsov
Joshua V. Dillon
I. Langmore
Dustin Tran
Srinivas Vasudevan
BDL
18
103
0
09 Mar 2019
Spread Divergence
Spread Divergence
Mingtian Zhang
Peter Hayes
Thomas Bird
Raza Habib
David Barber
MedIm
UD
30
20
0
21 Nov 2018
Entropic GANs meet VAEs: A Statistical Approach to Compute Sample
  Likelihoods in GANs
Entropic GANs meet VAEs: A Statistical Approach to Compute Sample Likelihoods in GANs
Yogesh Balaji
Hamed Hassani
Rama Chellappa
S. Feizi
GAN
DRL
30
20
0
09 Oct 2018
Assessing Generative Models via Precision and Recall
Assessing Generative Models via Precision and Recall
Mehdi S. M. Sajjadi
Olivier Bachem
Mario Lucic
Olivier Bousquet
Sylvain Gelly
EGVM
8
565
0
31 May 2018
On GANs and GMMs
On GANs and GMMs
Eitan Richardson
Yair Weiss
GAN
15
149
0
31 May 2018
Quantitatively Evaluating GANs With Divergences Proposed for Training
Quantitatively Evaluating GANs With Divergences Proposed for Training
Daniel Jiwoong Im
He Ma
Graham W. Taylor
K. Branson
EGVM
13
69
0
02 Mar 2018
PBGen: Partial Binarization of Deconvolution-Based Generators for Edge
  Intelligence
PBGen: Partial Binarization of Deconvolution-Based Generators for Edge Intelligence
Jinglan Liu
Jiaxin Zhang
Yukun Ding
Xiaowei Xu
Meng-Long Jiang
Yiyu Shi
22
4
0
26 Feb 2018
Is Generator Conditioning Causally Related to GAN Performance?
Is Generator Conditioning Causally Related to GAN Performance?
Augustus Odena
Jacob Buckman
Catherine Olsson
Tom B. Brown
C. Olah
Colin Raffel
Ian Goodfellow
AI4CE
14
112
0
23 Feb 2018
Inference Suboptimality in Variational Autoencoders
Inference Suboptimality in Variational Autoencoders
Chris Cremer
Xuechen Li
D. Duvenaud
DRL
BDL
11
281
0
10 Jan 2018
Faithful Inversion of Generative Models for Effective Amortized
  Inference
Faithful Inversion of Generative Models for Effective Amortized Inference
Stefan Webb
Adam Goliñski
R. Zinkov
Siddharth Narayanaswamy
Tom Rainforth
Yee Whye Teh
Frank D. Wood
TPM
24
46
0
01 Dec 2017
PassGAN: A Deep Learning Approach for Password Guessing
PassGAN: A Deep Learning Approach for Password Guessing
B. Hitaj
Paolo Gasti
G. Ateniese
F. Pérez-Cruz
GAN
22
246
0
01 Sep 2017
Comparison of Maximum Likelihood and GAN-based training of Real NVPs
Comparison of Maximum Likelihood and GAN-based training of Real NVPs
Ivo Danihelka
Balaji Lakshminarayanan
Benigno Uria
Daan Wierstra
Peter Dayan
GAN
11
53
0
15 May 2017
Boundary-Seeking Generative Adversarial Networks
Boundary-Seeking Generative Adversarial Networks
R. Devon Hjelm
Athul Paul Jacob
Tong Che
Adam Trischler
Kyunghyun Cho
Yoshua Bengio
GAN
11
170
0
27 Feb 2017
Adversarial Variational Bayes: Unifying Variational Autoencoders and
  Generative Adversarial Networks
Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks
L. Mescheder
Sebastian Nowozin
Andreas Geiger
GAN
BDL
29
525
0
17 Jan 2017
Generative Adversarial Parallelization
Generative Adversarial Parallelization
Daniel Jiwoong Im
He Ma
C. Kim
Graham W. Taylor
GAN
22
38
0
13 Dec 2016
Learning in Implicit Generative Models
Learning in Implicit Generative Models
S. Mohamed
Balaji Lakshminarayanan
GAN
23
412
0
11 Oct 2016
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
227
2,545
0
25 Jan 2016
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
173
3,260
0
09 Jun 2012
1