ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.02731
  4. Cited By
Variational Lossy Autoencoder
v1v2 (latest)

Variational Lossy Autoencoder

8 November 2016
Xi Chen
Diederik P. Kingma
Tim Salimans
Yan Duan
Prafulla Dhariwal
John Schulman
Ilya Sutskever
Pieter Abbeel
    DRLSSLGAN
ArXiv (abs)PDFHTML

Papers citing "Variational Lossy Autoencoder"

41 / 391 papers shown
Title
PixelSNAIL: An Improved Autoregressive Generative Model
PixelSNAIL: An Improved Autoregressive Generative Model
Xi Chen
Nikhil Mishra
Mostafa Rohaninejad
Pieter Abbeel
DRLDiffMBDLGAN
80
276
0
28 Dec 2017
Nonparametric Inference for Auto-Encoding Variational Bayes
Nonparametric Inference for Auto-Encoding Variational Bayes
Erik Bodin
Iman Malik
Carl Henrik Ek
Neill D. F. Campbell
DRLBDL
44
16
0
18 Dec 2017
Generating and designing DNA with deep generative models
Generating and designing DNA with deep generative models
N. Killoran
Leo J. Lee
Andrew Delong
David Duvenaud
B. Frey
AI4CE
61
147
0
17 Dec 2017
Online Learning with Gated Linear Networks
Online Learning with Gated Linear Networks
J. Veness
Tor Lattimore
Avishkar Bhoopchand
A. Grabska-Barwinska
Christopher Mattern
Peter Toth
166
25
0
05 Dec 2017
Spatial PixelCNN: Generating Images from Patches
Spatial PixelCNN: Generating Images from Patches
Nader Akoury
Anh Totti Nguyen
57
4
0
03 Dec 2017
Auxiliary Guided Autoregressive Variational Autoencoders
Auxiliary Guided Autoregressive Variational Autoencoders
Thomas Lucas
Jakob Verbeek
GANDRL
66
20
0
30 Nov 2017
Parallel WaveNet: Fast High-Fidelity Speech Synthesis
Parallel WaveNet: Fast High-Fidelity Speech Synthesis
Aaron van den Oord
Yazhe Li
Igor Babuschkin
Karen Simonyan
Oriol Vinyals
...
Alex Graves
Helen King
T. Walters
Dan Belov
Demis Hassabis
233
859
0
28 Nov 2017
Scalable Recollections for Continual Lifelong Learning
Scalable Recollections for Continual Lifelong Learning
Matthew D Riemer
Tim Klinger
Djallel Bouneffouf
M. Franceschini
CLL
78
64
0
17 Nov 2017
Latent Constraints: Learning to Generate Conditionally from
  Unconditional Generative Models
Latent Constraints: Learning to Generate Conditionally from Unconditional Generative Models
Jesse Engel
Matthew Hoffman
Adam Roberts
DRL
97
140
0
15 Nov 2017
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
213
698
0
15 Nov 2017
Z-Forcing: Training Stochastic Recurrent Networks
Z-Forcing: Training Stochastic Recurrent Networks
Anirudh Goyal
Alessandro Sordoni
Marc-Alexandre Côté
Nan Rosemary Ke
Yoshua Bengio
BDL
93
4
0
15 Nov 2017
Neural Discrete Representation Learning
Neural Discrete Representation Learning
Aaron van den Oord
Oriol Vinyals
Koray Kavukcuoglu
BDLSSLOCL
255
5,089
0
02 Nov 2017
Fixing a Broken ELBO
Fixing a Broken ELBO
Alexander A. Alemi
Ben Poole
Ian S. Fischer
Joshua V. Dillon
Rif A. Saurous
Kevin Patrick Murphy
DRLBDL
101
80
0
01 Nov 2017
On the challenges of learning with inference networks on sparse,
  high-dimensional data
On the challenges of learning with inference networks on sparse, high-dimensional data
Rahul G. Krishnan
Dawen Liang
Matthew Hoffman
CMLBDL
87
85
0
17 Oct 2017
Deconvolutional Latent-Variable Model for Text Sequence Matching
Deconvolutional Latent-Variable Model for Text Sequence Matching
Dinghan Shen
Yizhe Zhang
Ricardo Henao
Qinliang Su
Lawrence Carin
DRLBDL
105
68
0
21 Sep 2017
A learning framework for winner-take-all networks with stochastic
  synapses
A learning framework for winner-take-all networks with stochastic synapses
Hesham Mostafa
Gert Cauwenberghs
BDL
56
14
0
14 Aug 2017
GLSR-VAE: Geodesic Latent Space Regularization for Variational
  AutoEncoder Architectures
GLSR-VAE: Geodesic Latent Space Regularization for Variational AutoEncoder Architectures
Gaëtan Hadjeres
Frank Nielsen
F. Pachet
DRL
79
65
0
14 Jul 2017
Adversarially Regularized Autoencoders
Adversarially Regularized Autoencoders
Jiaqi Zhao
Yoon Kim
Kelly Zhang
Alexander M. Rush
Yann LeCun
DRLGNNGAN
69
78
0
13 Jun 2017
Channel-Recurrent Autoencoding for Image Modeling
Channel-Recurrent Autoencoding for Image Modeling
Wenling Shang
Kihyuk Sohn
Yuandong Tian
DRLGAN
27
3
0
12 Jun 2017
InfoVAE: Information Maximizing Variational Autoencoders
InfoVAE: Information Maximizing Variational Autoencoders
Shengjia Zhao
Jiaming Song
Stefano Ermon
DRL
107
447
0
07 Jun 2017
On Unifying Deep Generative Models
On Unifying Deep Generative Models
Zhiting Hu
Zichao Yang
Ruslan Salakhutdinov
Eric Xing
DRLGAN
118
127
0
02 Jun 2017
PixelGAN Autoencoders
PixelGAN Autoencoders
Alireza Makhzani
Brendan J. Frey
GAN
77
100
0
02 Jun 2017
Generative Models of Visually Grounded Imagination
Generative Models of Visually Grounded Imagination
Ramakrishna Vedantam
Ian S. Fischer
Jonathan Huang
Kevin Patrick Murphy
101
139
0
30 May 2017
Multi-Level Variational Autoencoder: Learning Disentangled
  Representations from Grouped Observations
Multi-Level Variational Autoencoder: Learning Disentangled Representations from Grouped Observations
Diane Bouchacourt
Ryota Tomioka
Sebastian Nowozin
BDLOODDRL
80
314
0
24 May 2017
Multi-Stage Variational Auto-Encoders for Coarse-to-Fine Image
  Generation
Multi-Stage Variational Auto-Encoders for Coarse-to-Fine Image Generation
Lei Cai
Hongyang Gao
Shuiwang Ji
96
69
0
19 May 2017
VAE with a VampPrior
VAE with a VampPrior
Jakub M. Tomczak
Max Welling
GANBDL
131
635
0
19 May 2017
Learning Multimodal Transition Dynamics for Model-Based Reinforcement
  Learning
Learning Multimodal Transition Dynamics for Model-Based Reinforcement Learning
Thomas M. Moerland
Joost Broekens
Catholijn M. Jonker
OffRL
87
31
0
01 May 2017
Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders
Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders
Jesse Engel
Cinjon Resnick
Adam Roberts
Sander Dieleman
Douglas Eck
Karen Simonyan
Mohammad Norouzi
130
631
0
05 Apr 2017
Semi-Supervised Generation with Cluster-aware Generative Models
Semi-Supervised Generation with Cluster-aware Generative Models
Lars Maaløe
Marco Fraccaro
Ole Winther
117
28
0
03 Apr 2017
Prediction and Control with Temporal Segment Models
Prediction and Control with Temporal Segment Models
Nikhil Mishra
Pieter Abbeel
Igor Mordatch
BDL
92
64
0
12 Mar 2017
Towards Deeper Understanding of Variational Autoencoding Models
Towards Deeper Understanding of Variational Autoencoding Models
Shengjia Zhao
Jiaming Song
Stefano Ermon
DRL
88
158
0
28 Feb 2017
Learning Hierarchical Features from Generative Models
Learning Hierarchical Features from Generative Models
Shengjia Zhao
Jiaming Song
Stefano Ermon
BDLGANOODDRL
87
74
0
27 Feb 2017
Improved Variational Autoencoders for Text Modeling using Dilated
  Convolutions
Improved Variational Autoencoders for Text Modeling using Dilated Convolutions
Zichao Yang
Zhiting Hu
Ruslan Salakhutdinov
Taylor Berg-Kirkpatrick
105
389
0
27 Feb 2017
A Hybrid Convolutional Variational Autoencoder for Text Generation
A Hybrid Convolutional Variational Autoencoder for Text Generation
Stanislau Semeniuta
Aliaksei Severyn
Erhardt Barth
97
252
0
08 Feb 2017
Variational Dropout Sparsifies Deep Neural Networks
Variational Dropout Sparsifies Deep Neural Networks
Dmitry Molchanov
Arsenii Ashukha
Dmitry Vetrov
BDL
194
831
0
19 Jan 2017
Adversarial Variational Bayes: Unifying Variational Autoencoders and
  Generative Adversarial Networks
Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks
L. Mescheder
Sebastian Nowozin
Andreas Geiger
GANBDL
169
530
0
17 Jan 2017
NIPS 2016 Tutorial: Generative Adversarial Networks
NIPS 2016 Tutorial: Generative Adversarial Networks
Ian Goodfellow
GAN
185
1,726
0
31 Dec 2016
PixelCNN Models with Auxiliary Variables for Natural Image Modeling
PixelCNN Models with Auxiliary Variables for Natural Image Modeling
Alexander Kolesnikov
Christoph H. Lampert
GAN
71
3
0
24 Dec 2016
Piecewise Latent Variables for Neural Variational Text Processing
Piecewise Latent Variables for Neural Variational Text Processing
Iulian Serban
Alexander Ororbia
Joelle Pineau
Aaron Courville
DRLBDL
74
2
0
01 Dec 2016
PixelVAE: A Latent Variable Model for Natural Images
PixelVAE: A Latent Variable Model for Natural Images
Ishaan Gulrajani
Kundan Kumar
Faruk Ahmed
Adrien Ali Taïga
Francesco Visin
David Vazquez
Aaron Courville
DRLSSLBDL
93
340
0
15 Nov 2016
Deep Unsupervised Clustering with Gaussian Mixture Variational
  Autoencoders
Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders
Nat Dilokthanakul
P. Mediano
M. Garnelo
M. J. Lee
Hugh Salimbeni
Kai Arulkumaran
Murray Shanahan
DRL
84
658
0
08 Nov 2016
Previous
12345678