ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.02731
  4. Cited By
Variational Lossy Autoencoder
v1v2 (latest)

Variational Lossy Autoencoder

8 November 2016
Xi Chen
Diederik P. Kingma
Tim Salimans
Yan Duan
Prafulla Dhariwal
John Schulman
Ilya Sutskever
Pieter Abbeel
    DRLSSLGAN
ArXiv (abs)PDFHTML

Papers citing "Variational Lossy Autoencoder"

50 / 391 papers shown
Title
The Functional Neural Process
The Functional Neural Process
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
BDL
75
77
0
19 Jun 2019
Reweighted Expectation Maximization
Reweighted Expectation Maximization
Adji Bousso Dieng
John Paisley
VLMDRL
63
17
0
13 Jun 2019
An Introduction to Variational Autoencoders
An Introduction to Variational Autoencoders
Diederik P. Kingma
Max Welling
BDLSSLDRL
129
2,380
0
06 Jun 2019
A Cross-Sentence Latent Variable Model for Semi-Supervised Text Sequence
  Matching
A Cross-Sentence Latent Variable Model for Semi-Supervised Text Sequence Matching
Jihun Choi
Taeuk Kim
Sang-goo Lee
BDL
72
6
0
04 Jun 2019
Generating Diverse High-Fidelity Images with VQ-VAE-2
Generating Diverse High-Fidelity Images with VQ-VAE-2
Ali Razavi
Aaron van den Oord
Oriol Vinyals
DRLBDL
162
1,830
0
02 Jun 2019
On the Necessity and Effectiveness of Learning the Prior of Variational
  Auto-Encoder
On the Necessity and Effectiveness of Learning the Prior of Variational Auto-Encoder
Haowen Xu
Wenxiao Chen
Jinlin Lai
Zhihan Li
Youjian Zhao
Dan Pei
DRLBDL
84
14
0
31 May 2019
Educating Text Autoencoders: Latent Representation Guidance via
  Denoising
Educating Text Autoencoders: Latent Representation Guidance via Denoising
T. Shen
Jonas W. Mueller
Regina Barzilay
Tommi Jaakkola
35
4
0
29 May 2019
Unified Probabilistic Deep Continual Learning through Generative Replay
  and Open Set Recognition
Unified Probabilistic Deep Continual Learning through Generative Replay and Open Set Recognition
Martin Mundt
Iuliia Pliushch
Sagnik Majumder
Yongwon Hong
Visvanathan Ramesh
UQCVBDL
98
41
0
28 May 2019
The Variational InfoMax AutoEncoder
The Variational InfoMax AutoEncoder
Vincenzo Crescimanna
Bruce P. Graham
DRL
57
3
0
25 May 2019
mu-Forcing: Training Variational Recurrent Autoencoders for Text
  Generation
mu-Forcing: Training Variational Recurrent Autoencoders for Text Generation
Dayiheng Liu
Xu Yang
Feng He
Yuanyuan Chen
Jiancheng Lv
DRLBDL
27
33
0
24 May 2019
Compression with Flows via Local Bits-Back Coding
Compression with Flows via Local Bits-Back Coding
Jonathan Ho
Evan Lohn
Pieter Abbeel
97
54
0
21 May 2019
Dueling Decoders: Regularizing Variational Autoencoder Latent Spaces
Dueling Decoders: Regularizing Variational Autoencoder Latent Spaces
Bryan Seybold
Emily Fertig
Alexander A. Alemi
Ian S. Fischer
DRL
89
4
0
17 May 2019
Bit-Swap: Recursive Bits-Back Coding for Lossless Compression with
  Hierarchical Latent Variables
Bit-Swap: Recursive Bits-Back Coding for Lossless Compression with Hierarchical Latent Variables
F. Kingma
Pieter Abbeel
Jonathan Ho
97
98
0
16 May 2019
MoGlow: Probabilistic and controllable motion synthesis using
  normalising flows
MoGlow: Probabilistic and controllable motion synthesis using normalising flows
G. Henter
Simon Alexanderson
Jonas Beskow
94
98
0
16 May 2019
Learning Hierarchical Priors in VAEs
Learning Hierarchical Priors in VAEs
Alexej Klushyn
Nutan Chen
Richard Kurle
Botond Cseke
Patrick van der Smagt
BDLCMLDRL
84
101
0
13 May 2019
Importance Weighted Hierarchical Variational Inference
Importance Weighted Hierarchical Variational Inference
Artem Sobolev
Dmitry Vetrov
BDL
71
29
0
08 May 2019
Deep Residual Autoencoders for Expectation Maximization-inspired
  Dictionary Learning
Deep Residual Autoencoders for Expectation Maximization-inspired Dictionary Learning
Bahareh Tolooshams
Sourav Dey
Demba E. Ba
54
4
0
18 Apr 2019
Effective Estimation of Deep Generative Language Models
Effective Estimation of Deep Generative Language Models
Tom Pelsmaeker
Wilker Aziz
BDL
83
28
0
17 Apr 2019
Exact Rate-Distortion in Autoencoders via Echo Noise
Exact Rate-Distortion in Autoencoders via Echo Noise
Rob Brekelmans
Daniel Moyer
Aram Galstyan
Greg Ver Steeg
59
17
0
15 Apr 2019
Information Bottleneck and its Applications in Deep Learning
Information Bottleneck and its Applications in Deep Learning
Hassan Hafez-Kolahi
S. Kasaei
53
19
0
07 Apr 2019
From Variational to Deterministic Autoencoders
From Variational to Deterministic Autoencoders
Partha Ghosh
Mehdi S. M. Sajjadi
Antonio Vergari
Michael J. Black
Bernhard Schölkopf
DRL
104
272
0
29 Mar 2019
Adversarial Approximate Inference for Speech to Electroglottograph
  Conversion
Adversarial Approximate Inference for Speech to Electroglottograph Conversion
Prathosh A. P.
Varun Srivastava
Mayank Mishra
16
6
0
28 Mar 2019
Diagnosing and Enhancing VAE Models
Diagnosing and Enhancing VAE Models
Bin Dai
David Wipf
DRL
70
381
0
14 Mar 2019
Generative Graph Convolutional Network for Growing Graphs
Generative Graph Convolutional Network for Growing Graphs
Da Xu
Chuanwei Ruan
Kamiya Motwani
Evren Körpeoglu
Sushant Kumar
Kannan Achan
GNN
47
14
0
06 Mar 2019
Hierarchical Autoregressive Image Models with Auxiliary Decoders
Hierarchical Autoregressive Image Models with Auxiliary Decoders
J. Fauw
Sander Dieleman
Karen Simonyan
GAN
87
37
0
06 Mar 2019
Learning Dynamics Model in Reinforcement Learning by Incorporating the
  Long Term Future
Learning Dynamics Model in Reinforcement Learning by Incorporating the Long Term Future
Nan Rosemary Ke
Amanpreet Singh
Ahmed Touati
Anirudh Goyal
Yoshua Bengio
Devi Parikh
Dhruv Batra
78
48
0
05 Mar 2019
adVAE: A self-adversarial variational autoencoder with Gaussian anomaly
  prior knowledge for anomaly detection
adVAE: A self-adversarial variational autoencoder with Gaussian anomaly prior knowledge for anomaly detection
Xuhong Wang
Ying Du
Shijie Lin
Ping Cui
Yuntian Shen
Yupu Yang
DRLViTUQCV
74
101
0
03 Mar 2019
BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling
BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling
Lars Maaløe
Marco Fraccaro
Valentin Liévin
Ole Winther
BDLDRL
88
215
0
06 Feb 2019
Towards Generating Long and Coherent Text with Multi-Level Latent
  Variable Models
Towards Generating Long and Coherent Text with Multi-Level Latent Variable Models
Dinghan Shen
Asli Celikyilmaz
Yizhe Zhang
Liqun Chen
Xin Eric Wang
Jianfeng Gao
Lawrence Carin
DRL
79
53
0
01 Feb 2019
Latent Normalizing Flows for Discrete Sequences
Latent Normalizing Flows for Discrete Sequences
Zachary M. Ziegler
Alexander M. Rush
BDLDRL
103
129
0
29 Jan 2019
Semi-Unsupervised Learning: Clustering and Classifying using
  Ultra-Sparse Labels
Semi-Unsupervised Learning: Clustering and Classifying using Ultra-Sparse Labels
M. Willetts
Stephen J. Roberts
Christopher C Holmes
34
4
0
24 Jan 2019
Lagging Inference Networks and Posterior Collapse in Variational
  Autoencoders
Lagging Inference Networks and Posterior Collapse in Variational Autoencoders
Junxian He
Daniel M. Spokoyny
Graham Neubig
Taylor Berg-Kirkpatrick
BDLDRL
99
273
0
16 Jan 2019
Variation Network: Learning High-level Attributes for Controlled Input
  Manipulation
Variation Network: Learning High-level Attributes for Controlled Input Manipulation
Gaëtan Hadjeres
Frank Nielsen
45
2
0
11 Jan 2019
Undirected Graphical Models as Approximate Posteriors
Undirected Graphical Models as Approximate Posteriors
Arash Vahdat
Evgeny Andriyash
W. Macready
56
2
0
11 Jan 2019
Preventing Posterior Collapse with delta-VAEs
Preventing Posterior Collapse with delta-VAEs
Ali Razavi
Aaron van den Oord
Ben Poole
Oriol Vinyals
DRL
94
171
0
10 Jan 2019
MAE: Mutual Posterior-Divergence Regularization for Variational
  AutoEncoders
MAE: Mutual Posterior-Divergence Regularization for Variational AutoEncoders
Xuezhe Ma
Chunting Zhou
Eduard H. Hovy
DRL
72
39
0
06 Jan 2019
Adaptive Density Estimation for Generative Models
Adaptive Density Estimation for Generative Models
Thomas Lucas
K. Shmelkov
Alahari Karteek
Cordelia Schmid
Jakob Verbeek
GANDRL
93
32
0
04 Jan 2019
Uncertainty Autoencoders: Learning Compressed Representations via
  Variational Information Maximization
Uncertainty Autoencoders: Learning Compressed Representations via Variational Information Maximization
Aditya Grover
Stefano Ermon
100
53
0
26 Dec 2018
A Factorial Mixture Prior for Compositional Deep Generative Models
A Factorial Mixture Prior for Compositional Deep Generative Models
Ulrich Paquet
Sumedh Ghaisas
O. Tieleman
CoGe
32
1
0
18 Dec 2018
A Tutorial on Deep Latent Variable Models of Natural Language
A Tutorial on Deep Latent Variable Models of Natural Language
Yoon Kim
Sam Wiseman
Alexander M. Rush
BDLVLM
121
42
0
17 Dec 2018
Recent Advances in Autoencoder-Based Representation Learning
Recent Advances in Autoencoder-Based Representation Learning
Michael Tschannen
Olivier Bachem
Mario Lucic
OODSSLDRL
83
446
0
12 Dec 2018
Learning Controllable Fair Representations
Learning Controllable Fair Representations
Jiaming Song
Pratyusha Kalluri
Aditya Grover
Shengjia Zhao
Stefano Ermon
FaML
87
180
0
11 Dec 2018
Disentangling Disentanglement in Variational Autoencoders
Disentangling Disentanglement in Variational Autoencoders
Emile Mathieu
Tom Rainforth
Siddharth Narayanaswamy
Yee Whye Teh
DRLCoGe
80
10
0
06 Dec 2018
Neural Joint Source-Channel Coding
Neural Joint Source-Channel Coding
Kristy Choi
Kedar Tatwawadi
Aditya Grover
Tsachy Weissman
Stefano Ermon
64
39
0
19 Nov 2018
Generative Dual Adversarial Network for Generalized Zero-shot Learning
Generative Dual Adversarial Network for Generalized Zero-shot Learning
He Huang
Chang-Dong Wang
Philip S. Yu
Chang-Dong Wang
GAN
111
222
0
12 Nov 2018
A Novel Predictive-Coding-Inspired Variational RNN Model for Online
  Prediction and Recognition
A Novel Predictive-Coding-Inspired Variational RNN Model for Online Prediction and Recognition
Ahmadreza Ahmadi
Jun Tani
BDLDRL
52
4
0
04 Nov 2018
Content preserving text generation with attribute controls
Content preserving text generation with attribute controls
Lajanugen Logeswaran
Honglak Lee
Samy Bengio
97
118
0
03 Nov 2018
Deep Generative Model with Beta Bernoulli Process for Modeling and
  Learning Confounding Factors
Deep Generative Model with Beta Bernoulli Process for Modeling and Learning Confounding Factors
P. Gyawali
Cameron Knight
S. Ghimire
B. Horácek
J. Sapp
Linwei Wang
BDLDRL
52
1
0
31 Oct 2018
Gaussian Process Prior Variational Autoencoders
Gaussian Process Prior Variational Autoencoders
F. P. Casale
Adrian Dalca
Luca Saglietti
Jennifer Listgarten
Nicolò Fusi
BDLCML
71
138
0
28 Oct 2018
The Variational Deficiency Bottleneck
The Variational Deficiency Bottleneck
P. Banerjee
Guido Montúfar
176
7
0
27 Oct 2018
Previous
12345678
Next