Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1611.00429
Cited By
v1
v2
v3 (latest)
Distributed Mean Estimation with Limited Communication
2 November 2016
A. Suresh
Felix X. Yu
Sanjiv Kumar
H. B. McMahan
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Distributed Mean Estimation with Limited Communication"
46 / 196 papers shown
Title
Moniqua: Modulo Quantized Communication in Decentralized SGD
International Conference on Machine Learning (ICML), 2020
Yucheng Lu
Christopher De Sa
MQ
159
51
0
26 Feb 2020
Three Approaches for Personalization with Applications to Federated Learning
Yishay Mansour
M. Mohri
Jae Hun Ro
A. Suresh
FedML
314
624
0
25 Feb 2020
Communication-Efficient Edge AI: Algorithms and Systems
IEEE Communications Surveys and Tutorials (COMST), 2020
Yuanming Shi
Kai Yang
Tao Jiang
Jun Zhang
Khaled B. Letaief
GNN
159
382
0
22 Feb 2020
New Bounds For Distributed Mean Estimation and Variance Reduction
Peter Davies
Vijaykrishna Gurunathan
Niusha Moshrefi
Saleh Ashkboos
Dan Alistarh
FedML
169
2
0
21 Feb 2020
Differentially Quantized Gradient Methods
IEEE Transactions on Information Theory (IEEE Trans. Inf. Theory), 2020
Chung-Yi Lin
V. Kostina
B. Hassibi
MQ
258
8
0
06 Feb 2020
Communication Efficient Federated Learning over Multiple Access Channels
Wei-Ting Chang
Ravi Tandon
FedML
132
44
0
23 Jan 2020
RPN: A Residual Pooling Network for Efficient Federated Learning
European Conference on Artificial Intelligence (ECAI), 2020
Anbu Huang
Yuanyuan Chen
Yang Liu
Tianjian Chen
Qiang Yang
FedML
163
12
0
23 Jan 2020
Think Locally, Act Globally: Federated Learning with Local and Global Representations
Paul Pu Liang
Terrance Liu
Liu Ziyin
Nicholas B. Allen
Randy P. Auerbach
David Brent
Ruslan Salakhutdinov
Louis-Philippe Morency
FedML
499
658
0
06 Jan 2020
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
479
7,260
0
10 Dec 2019
Federated Learning with Autotuned Communication-Efficient Secure Aggregation
Asilomar Conference on Signals, Systems and Computers (ACSSC), 2019
Keith Bonawitz
Fariborz Salehi
Jakub Konecný
H. B. McMahan
Marco Gruteser
FedML
129
78
0
30 Nov 2019
Communication-Efficient and Byzantine-Robust Distributed Learning with Error Feedback
IEEE Journal on Selected Areas in Information Theory (JSAIT), 2019
Avishek Ghosh
R. Maity
S. Kadhe
A. Mazumdar
Kannan Ramchandran
FedML
226
29
0
21 Nov 2019
vqSGD: Vector Quantized Stochastic Gradient Descent
V. Gandikota
Daniel Kane
R. Maity
A. Mazumdar
MQ
154
4
0
18 Nov 2019
Hyper-Sphere Quantization: Communication-Efficient SGD for Federated Learning
XINYAN DAI
Xiao Yan
Kaiwen Zhou
Han Yang
K. K. Ng
James Cheng
Yu Fan
FedML
124
49
0
12 Nov 2019
Interaction is necessary for distributed learning with privacy or communication constraints
Symposium on the Theory of Computing (STOC), 2019
Y. Dagan
Vitaly Feldman
231
12
0
11 Nov 2019
Secure Federated Submodel Learning
Chaoyue Niu
Fan Wu
Shaojie Tang
Lifeng Hua
Rongfei Jia
Chengfei Lv
Zhihua Wu
Guihai Chen
FedML
152
32
0
06 Nov 2019
SPARQ-SGD: Event-Triggered and Compressed Communication in Decentralized Stochastic Optimization
Navjot Singh
Deepesh Data
Jemin George
Suhas Diggavi
152
24
0
31 Oct 2019
The Scalability for Parallel Machine Learning Training Algorithm: Dataset Matters
Daning Cheng
Hanping Zhang
Fen Xia
Shigang Li
Yunquan Zhang
148
1
0
25 Oct 2019
Q-GADMM: Quantized Group ADMM for Communication Efficient Decentralized Machine Learning
IEEE Transactions on Communications (IEEE Trans. Commun.), 2019
Anis Elgabli
Jihong Park
Amrit Singh Bedi
Chaouki Ben Issaid
M. Bennis
Vaneet Aggarwal
425
71
0
23 Oct 2019
SCAFFOLD: Stochastic Controlled Averaging for Federated Learning
Sai Praneeth Karimireddy
Satyen Kale
M. Mohri
Sashank J. Reddi
Sebastian U. Stich
A. Suresh
FedML
255
380
0
14 Oct 2019
A Communication-Efficient Algorithm for Exponentially Fast Non-Bayesian Learning in Networks
IEEE Conference on Decision and Control (CDC), 2019
A. Mitra
J. Richards
S. Sundaram
115
15
0
04 Sep 2019
GADMM: Fast and Communication Efficient Framework for Distributed Machine Learning
Journal of machine learning research (JMLR), 2019
Anis Elgabli
Jihong Park
Amrit Singh Bedi
M. Bennis
Vaneet Aggarwal
FedML
242
85
0
30 Aug 2019
RATQ: A Universal Fixed-Length Quantizer for Stochastic Optimization
IEEE Transactions on Information Theory (IEEE Trans. Inf. Theory), 2019
Prathamesh Mayekar
Himanshu Tyagi
MQ
216
50
0
22 Aug 2019
Federated Learning with Additional Mechanisms on Clients to Reduce Communication Costs
Xin Yao
Tianchi Huang
Chenglei Wu
Ruixiao Zhang
Lifeng Sun
FedML
125
41
0
16 Aug 2019
Qsparse-local-SGD: Distributed SGD with Quantization, Sparsification, and Local Computations
IEEE Journal on Selected Areas in Information Theory (JSAIT), 2019
Debraj Basu
Deepesh Data
C. Karakuş
Suhas Diggavi
MQ
200
432
0
06 Jun 2019
Natural Compression for Distributed Deep Learning
Mathematical and Scientific Machine Learning (MSML), 2019
Samuel Horváth
Chen-Yu Ho
L. Horvath
Atal Narayan Sahu
Marco Canini
Peter Richtárik
271
163
0
27 May 2019
LAGC: Lazily Aggregated Gradient Coding for Straggler-Tolerant and Communication-Efficient Distributed Learning
IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2019
Jingjing Zhang
Osvaldo Simeone
144
33
0
22 May 2019
DoubleSqueeze: Parallel Stochastic Gradient Descent with Double-Pass Error-Compensated Compression
International Conference on Machine Learning (ICML), 2019
Hanlin Tang
Xiangru Lian
Chen Yu
Tong Zhang
Ji Liu
215
229
0
15 May 2019
Distributed Differentially Private Computation of Functions with Correlated Noise
H. Imtiaz
Jafar Mohammadi
Anand D. Sarwate
OOD
178
13
0
22 Apr 2019
Distributed Learning with Sublinear Communication
International Conference on Machine Learning (ICML), 2019
Jayadev Acharya
Christopher De Sa
Dylan J. Foster
Karthik Sridharan
FedML
197
40
0
28 Feb 2019
Agnostic Federated Learning
International Conference on Machine Learning (ICML), 2019
M. Mohri
Gary Sivek
A. Suresh
FedML
559
1,035
0
01 Feb 2019
Nonparametric Inference under B-bits Quantization
Kexuan Li
Ruiqi Liu
Ganggang Xu
Zuofeng Shang
MQ
112
0
0
24 Jan 2019
Expanding the Reach of Federated Learning by Reducing Client Resource Requirements
S. Caldas
Jakub Konecný
H. B. McMahan
Ameet Talwalkar
277
485
0
18 Dec 2018
Locally Private Learning without Interaction Requires Separation
Neural Information Processing Systems (NeurIPS), 2018
Amit Daniely
Vitaly Feldman
197
12
0
24 Sep 2018
ATOMO: Communication-efficient Learning via Atomic Sparsification
Hongyi Wang
Scott Sievert
Zachary B. Charles
Shengchao Liu
S. Wright
Dimitris Papailiopoulos
237
371
0
11 Jun 2018
cpSGD: Communication-efficient and differentially-private distributed SGD
Naman Agarwal
A. Suresh
Felix X. Yu
Sanjiv Kumar
H. B. McMahan
FedML
256
523
0
27 May 2018
LAG: Lazily Aggregated Gradient for Communication-Efficient Distributed Learning
Tianyi Chen
G. Giannakis
Tao Sun
W. Yin
161
310
0
25 May 2018
Byzantine Stochastic Gradient Descent
Dan Alistarh
Zeyuan Allen-Zhu
Haibin Zhang
FedML
177
311
0
23 Mar 2018
D
2
^2
2
: Decentralized Training over Decentralized Data
Hanlin Tang
Xiangru Lian
Ming Yan
Ce Zhang
Ji Liu
206
365
0
19 Mar 2018
Communication Compression for Decentralized Training
Hanlin Tang
Shaoduo Gan
Ce Zhang
Tong Zhang
Ji Liu
286
287
0
17 Mar 2018
signSGD: Compressed Optimisation for Non-Convex Problems
Jeremy Bernstein
Yu Wang
Kamyar Azizzadenesheli
Anima Anandkumar
FedML
ODL
435
1,154
0
13 Feb 2018
Gradient Sparsification for Communication-Efficient Distributed Optimization
Neural Information Processing Systems (NeurIPS), 2017
Jianqiao Wangni
Jialei Wang
Ji Liu
Tong Zhang
225
565
0
26 Oct 2017
Stochastic, Distributed and Federated Optimization for Machine Learning
Jakub Konecný
FedML
137
38
0
04 Jul 2017
TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning
W. Wen
Cong Xu
Feng Yan
Chunpeng Wu
Yandan Wang
Yiran Chen
Hai Helen Li
341
1,026
0
22 May 2017
Randomized Distributed Mean Estimation: Accuracy vs Communication
Jakub Konecný
Peter Richtárik
FedML
191
108
0
22 Nov 2016
Dealing with Range Anxiety in Mean Estimation via Statistical Queries
Vitaly Feldman
94
9
0
20 Nov 2016
Towards Geo-Distributed Machine Learning
Ignacio Cano
Markus Weimer
D. Mahajan
Carlo Curino
Giovanni Matteo Fumarola
140
57
0
30 Mar 2016
Previous
1
2
3
4