Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1611.00429
Cited By
v1
v2
v3 (latest)
Distributed Mean Estimation with Limited Communication
2 November 2016
A. Suresh
Felix X. Yu
Sanjiv Kumar
H. B. McMahan
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Distributed Mean Estimation with Limited Communication"
50 / 196 papers shown
Title
CafeQ: Calibration-free Quantization via Learned Transformations and Adaptive Rounding
Ziteng Sun
Adrian Benton
Samuel Kushnir
Asher Trockman
Vikas Singh
Suhas Diggavi
A. Suresh
MQ
37
0
0
24 Nov 2025
Efficient Covariance Estimation for Sparsified Functional Data
Sijie Zheng
Fandong Meng
Jie Zhou
16
0
0
23 Nov 2025
Low-Precision Streaming PCA
Sanjoy Dasgupta
Syamantak Kumar
Shourya Pandey
Purnamrita Sarkar
96
0
0
25 Oct 2025
Unbiased Gradient Low-Rank Projection
Rui Pan
Yang Luo
Yuxing Liu
Yang You
Tong Zhang
72
0
0
20 Oct 2025
Sequential 1-bit Mean Estimation with Near-Optimal Sample Complexity
Ivan Lau
Jonathan Scarlett
72
1
0
26 Sep 2025
Metis: Training LLMs with FP4 Quantization
Hengjie Cao
M. Ben-Chen
Yifeng Yang
Ruijun Huang
Fang Dong
...
Fan Wu
Fan Yang
Tun Lu
Ning Gu
Li Shang
MQ
160
1
0
30 Aug 2025
Quartet: Native FP4 Training Can Be Optimal for Large Language Models
Roberto L. Castro
Andrei Panferov
Soroush Tabesh
Oliver Sieberling
Jiale Chen
Mahdi Nikdan
Saleh Ashkboos
Dan Alistarh
MQ
236
6
0
20 May 2025
Convergence Analysis of Asynchronous Federated Learning with Gradient Compression for Non-Convex Optimization
Diying Yang
Yingwei Hou
Danyang Xiao
FedML
238
0
0
28 Apr 2025
Distributionally Robust Federated Learning: An ADMM Algorithm
Wen Bai
Yi Wong
Xiao Qiao
Chin Pang Ho
FedML
OOD
250
0
0
24 Mar 2025
PREAMBLE: Private and Efficient Aggregation via Block Sparse Vectors
Hilal Asi
Vitaly Feldman
Hannah Keller
G. Rothblum
Kunal Talwar
FedML
312
1
0
14 Mar 2025
Characterizing the Accuracy-Communication-Privacy Trade-off in Distributed Stochastic Convex Optimization
International Conference on Artificial Intelligence and Statistics (AISTATS), 2025
Sudeep Salgia
Nikola Pavlovic
Yuejie Chi
Qing Zhao
240
0
0
06 Jan 2025
Review of Mathematical Optimization in Federated Learning
Shusen Yang
Fangyuan Zhao
Zihao Zhou
Liang Shi
Xuebin Ren
Zongben Xu
FedML
AI4CE
267
5
0
02 Dec 2024
Pushing the Limits of Large Language Model Quantization via the Linearity Theorem
Vladimir Malinovskii
Andrei Panferov
Ivan Ilin
Han Guo
Peter Richtárik
Dan Alistarh
MQ
283
10
0
26 Nov 2024
Overpredictive Signal Analytics in Federated Learning: Algorithms and Analysis
Vijay Anavangot
FedML
82
0
0
02 Oct 2024
CorBin-FL: A Differentially Private Federated Learning Mechanism using Common Randomness
Hojat Allah Salehi
Md Jueal Mia
S. Sandeep Pradhan
M. Hadi Amini
Farhad Shirani
FedML
239
1
0
20 Sep 2024
Federated PCA on Grassmann Manifold for IoT Anomaly Detection
Tung-Anh Nguyen
Long Tan Le
Tuan Dung Nguyen
Wei Bao
Suranga Seneviratne
Choong Seon Hong
N. H. Tran
151
14
0
10 Jul 2024
Beyond Throughput and Compression Ratios: Towards High End-to-end Utility of Gradient Compression
Wenchen Han
S. Vargaftik
Michael Mitzenmacher
Brad Karp
Ran Ben-Basat
141
7
0
01 Jul 2024
FedAQ: Communication-Efficient Federated Edge Learning via Joint Uplink and Downlink Adaptive Quantization
Linping Qu
Shenghui Song
Chi-Ying Tsui
MQ
FedML
127
5
0
26 Jun 2024
Training Diffusion Models with Federated Learning
Matthijs de Goede
Bart Cox
Jérémie Decouchant
FedML
171
14
0
18 Jun 2024
Privacy Preserving Semi-Decentralized Mean Estimation over Intermittently-Connected Networks
R. Saha
Mohamed Seif
M. Yemini
Andrea J. Goldsmith
H. Vincent Poor
FedML
171
5
0
06 Jun 2024
Exploring the Practicality of Federated Learning: A Survey Towards the Communication Perspective
Khiem H. Le
Nhan Luong-Ha
Manh Nguyen-Duc
Danh Le-Phuoc
Cuong D. Do
Kok-Seng Wong
FedML
206
6
0
30 May 2024
Universal Exact Compression of Differentially Private Mechanisms
Yanxiao Liu
Wei-Ning Chen
Ayfer Özgür
Cheuk Ting Li
173
9
0
28 May 2024
The Effect of Quantization in Federated Learning: A Rényi Differential Privacy Perspective
International Mediterranean Conference on Communications and Networking (MCN), 2024
Tianqu Kang
Lumin Liu
Hengtao He
Jun Zhang
Shenghui Song
Khaled B. Letaief
FedML
102
6
0
16 May 2024
Improved Communication-Privacy Trade-offs in
L
2
L_2
L
2
Mean Estimation under Streaming Differential Privacy
Wei-Ning Chen
Berivan Isik
Peter Kairouz
Albert No
Sewoong Oh
Zheng Xu
247
3
0
02 May 2024
Communication-Efficient Large-Scale Distributed Deep Learning: A Comprehensive Survey
Feng Liang
Zhen Zhang
Haifeng Lu
Victor C. M. Leung
Yanyi Guo
Xiping Hu
GNN
247
18
0
09 Apr 2024
Distributed Learning based on 1-Bit Gradient Coding in the Presence of Stragglers
Chengxi Li
Mikael Skoglund
234
7
0
19 Mar 2024
Efficient Language Model Architectures for Differentially Private Federated Learning
Jae Hun Ro
Srinadh Bhojanapalli
Zheng Xu
Yanxiang Zhang
A. Suresh
FedML
170
3
0
12 Mar 2024
Fed-CVLC: Compressing Federated Learning Communications with Variable-Length Codes
IEEE Conference on Computer Communications (INFOCOM), 2024
Xiaoxin Su
Yipeng Zhou
Laizhong Cui
John C. S. Lui
Jiangchuan Liu
FedML
162
2
0
06 Feb 2024
Optimal and Near-Optimal Adaptive Vector Quantization
Ran Ben-Basat
Y. Ben-Itzhak
Michael Mitzenmacher
S. Vargaftik
MQ
153
1
0
05 Feb 2024
L
q
L_q
L
q
Lower Bounds on Distributed Estimation via Fisher Information
Wei-Ning Chen
Ayfer Özgür
142
1
0
02 Feb 2024
Correlated Quantization for Faster Nonconvex Distributed Optimization
Conference on Uncertainty in Artificial Intelligence (UAI), 2024
Andrei Panferov
Yury Demidovich
Ahmad Rammal
Peter Richtárik
MQ
197
4
0
10 Jan 2024
Federated Hyperdimensional Computing
Kazim Ergun
Rishikanth Chandrasekaran
Tajana Simunic
FedML
109
0
0
26 Dec 2023
Kimad: Adaptive Gradient Compression with Bandwidth Awareness
Jihao Xin
Ivan Ilin
Shunkang Zhang
Marco Canini
Peter Richtárik
172
3
0
13 Dec 2023
Compression with Exact Error Distribution for Federated Learning
International Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Mahmoud Hegazy
Rémi Leluc
Cheuk Ting Li
Hadrien Hendrikx
FedML
142
17
0
31 Oct 2023
Correlation Aware Sparsified Mean Estimation Using Random Projection
Neural Information Processing Systems (NeurIPS), 2023
Shuli Jiang
Pranay Sharma
Gauri Joshi
236
2
0
29 Oct 2023
How Robust is Federated Learning to Communication Error? A Comparison Study Between Uplink and Downlink Channels
IEEE Wireless Communications and Networking Conference (WCNC), 2023
Linping Qu
Shenghui Song
Chi-Ying Tsui
Yuyi Mao
126
3
0
25 Oct 2023
Federated Learning with Nonvacuous Generalisation Bounds
Pierre Jobic
Maxime Haddouche
Benjamin Guedj
FedML
204
4
0
17 Oct 2023
Matrix Compression via Randomized Low Rank and Low Precision Factorization
Neural Information Processing Systems (NeurIPS), 2023
R. Saha
Varun Srivastava
Mert Pilanci
197
30
0
17 Oct 2023
Communication Compression for Byzantine Robust Learning: New Efficient Algorithms and Improved Rates
Ahmad Rammal
Kaja Gruntkowska
Nikita Fedin
Eduard A. Gorbunov
Peter Richtárik
244
11
0
15 Oct 2023
Ultima: Robust and Tail-Optimal AllReduce for Distributed Deep Learning in the Cloud
Symposium on Networked Systems Design and Implementation (NSDI), 2023
Ertza Warraich
Omer Shabtai
Khalid Manaa
S. Vargaftik
Y. Piasetzky
Matty Kadosh
Lalith Suresh
Muhammad Shahbaz
96
1
0
10 Oct 2023
Fundamental Limits of Distributed Optimization over Multiple Access Channel
Information Theory Workshop (ITW), 2023
Shubham K. Jha
147
1
0
05 Oct 2023
Federated Deep Equilibrium Learning: A Compact Shared Representation for Edge Communication Efficiency
International Conference on Information and Knowledge Management (CIKM), 2023
Long Tan Le
Tuan Dung Nguyen
Tung-Anh Nguyen
Choong Seon Hong
Nguyen H. Tran
FedML
197
0
0
27 Sep 2023
Communication Efficient Private Federated Learning Using Dithering
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2023
Burak Hasircioglu
Deniz Gunduz
FedML
225
12
0
14 Sep 2023
Maestro: Uncovering Low-Rank Structures via Trainable Decomposition
International Conference on Machine Learning (ICML), 2023
Samuel Horváth
Stefanos Laskaridis
Shashank Rajput
Hongyi Wang
BDL
262
9
0
28 Aug 2023
Differentially Private Aggregation via Imperfect Shuffling
International Test Conference (ITC), 2023
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
Jelani Nelson
Samson Zhou
FedML
248
1
0
28 Aug 2023
Optimal Compression of Unit Norm Vectors in the High Distortion Regime
International Symposium on Information Theory (ISIT), 2023
He Zhu
Avishek Ghosh
A. Mazumdar
120
3
0
16 Jul 2023
Adaptive Compression in Federated Learning via Side Information
International Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Berivan Isik
Francesco Pase
Deniz Gunduz
Sanmi Koyejo
Tsachy Weissman
M. Zorzi
FedML
136
16
0
22 Jun 2023
Training generative models from privatized data
IEEE Journal on Selected Areas in Information Theory (JSAIT), 2023
Daria Reshetova
Wei-Ning Chen
Ayfer Özgür
FedML
173
4
0
15 Jun 2023
Exact Optimality of Communication-Privacy-Utility Tradeoffs in Distributed Mean Estimation
Neural Information Processing Systems (NeurIPS), 2023
Berivan Isik
Wei-Ning Chen
Ayfer Özgür
Tsachy Weissman
Albert No
241
21
0
08 Jun 2023
Fast Optimal Locally Private Mean Estimation via Random Projections
Neural Information Processing Systems (NeurIPS), 2023
Hilal Asi
Vitaly Feldman
Jelani Nelson
Huy Le Nguyen
Kunal Talwar
FedML
199
15
0
07 Jun 2023
1
2
3
4
Next