Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1611.00429
Cited By
v1
v2
v3 (latest)
Distributed Mean Estimation with Limited Communication
2 November 2016
A. Suresh
Felix X. Yu
Sanjiv Kumar
H. B. McMahan
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Distributed Mean Estimation with Limited Communication"
50 / 196 papers shown
Title
Unbiased Single-scale and Multi-scale Quantizers for Distributed Optimization
S. Vineeth
MQ
99
0
0
26 Sep 2021
Critical Learning Periods in Federated Learning
Gang Yan
Hao Wang
Jian Li
FedML
183
11
0
12 Sep 2021
Fundamental limits of over-the-air optimization: Are analog schemes optimal?
Shubham K. Jha
Prathamesh Mayekar
Himanshu Tyagi
127
10
0
11 Sep 2021
EDEN: Communication-Efficient and Robust Distributed Mean Estimation for Federated Learning
S. Vargaftik
Ran Ben-Basat
Amit Portnoy
Gal Mendelson
Y. Ben-Itzhak
Michael Mitzenmacher
FedML
220
55
0
19 Aug 2021
FedJAX: Federated learning simulation with JAX
Jae Hun Ro
A. Suresh
Ke Wu
FedML
209
54
0
04 Aug 2021
DQ-SGD: Dynamic Quantization in SGD for Communication-Efficient Distributed Learning
IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS), 2021
Guangfeng Yan
Shao-Lun Huang
Tian-Shing Lan
Linqi Song
MQ
110
7
0
30 Jul 2021
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
408
454
0
14 Jul 2021
A Decentralized Adaptive Momentum Method for Solving a Class of Min-Max Optimization Problems
Signal Processing (Signal Process.), 2021
Babak Barazandeh
Tianjian Huang
George Michailidis
185
13
0
10 Jun 2021
Private Counting from Anonymous Messages: Near-Optimal Accuracy with Vanishing Communication Overhead
International Conference on Machine Learning (ICML), 2020
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
Rasmus Pagh
FedML
168
55
0
08 Jun 2021
DRIVE: One-bit Distributed Mean Estimation
Neural Information Processing Systems (NeurIPS), 2021
S. Vargaftik
Ran Ben-Basat
Amit Portnoy
Gal Mendelson
Y. Ben-Itzhak
Michael Mitzenmacher
OOD
FedML
533
58
0
18 May 2021
Slashing Communication Traffic in Federated Learning by Transmitting Clustered Model Updates
IEEE Journal on Selected Areas in Communications (JSAC), 2021
Laizhong Cui
Xiaoxin Su
Yipeng Zhou
Yi Pan
FedML
117
44
0
10 May 2021
Communication-Efficient Agnostic Federated Averaging
Interspeech (Interspeech), 2021
Jae Hun Ro
Mingqing Chen
Rajiv Mathews
M. Mohri
A. Suresh
FedML
232
17
0
06 Apr 2021
Efficient Randomized Subspace Embeddings for Distributed Optimization under a Communication Budget
IEEE Journal on Selected Areas in Information Theory (JSAIT), 2021
R. Saha
Mert Pilanci
Andrea J. Goldsmith
186
5
0
13 Mar 2021
Pufferfish: Communication-efficient Models At No Extra Cost
Conference on Machine Learning and Systems (MLSys), 2021
Hongyi Wang
Saurabh Agarwal
Dimitris Papailiopoulos
129
67
0
05 Mar 2021
Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices
Neural Information Processing Systems (NeurIPS), 2021
Max Ryabinin
Eduard A. Gorbunov
Vsevolod Plokhotnyuk
Gennady Pekhimenko
296
42
0
04 Mar 2021
On the Utility of Gradient Compression in Distributed Training Systems
Conference on Machine Learning and Systems (MLSys), 2021
Saurabh Agarwal
Hongyi Wang
Shivaram Venkataraman
Dimitris Papailiopoulos
233
51
0
28 Feb 2021
Lossless Compression of Efficient Private Local Randomizers
International Conference on Machine Learning (ICML), 2021
Vitaly Feldman
Kunal Talwar
158
42
0
24 Feb 2021
Learning with User-Level Privacy
Neural Information Processing Systems (NeurIPS), 2021
Daniel Levy
Ziteng Sun
Kareem Amin
Satyen Kale
Alex Kulesza
M. Mohri
A. Suresh
FedML
234
100
0
23 Feb 2021
MARINA: Faster Non-Convex Distributed Learning with Compression
International Conference on Machine Learning (ICML), 2021
Eduard A. Gorbunov
Konstantin Burlachenko
Zhize Li
Peter Richtárik
242
120
0
15 Feb 2021
Distributed Online Learning for Joint Regret with Communication Constraints
International Conference on Algorithmic Learning Theory (ALT), 2021
Dirk van der Hoeven
Hédi Hadiji
T. Erven
139
6
0
15 Feb 2021
Communication-Efficient Distributed Optimization with Quantized Preconditioners
International Conference on Machine Learning (ICML), 2021
Foivos Alimisis
Peter Davies
Dan Alistarh
171
17
0
14 Feb 2021
The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation
International Conference on Machine Learning (ICML), 2021
Peter Kairouz
Ziyu Liu
Thomas Steinke
FedML
295
275
0
12 Feb 2021
Adaptive Quantization of Model Updates for Communication-Efficient Federated Learning
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2021
Divyansh Jhunjhunwala
Advait Gadhikar
Gauri Joshi
Yonina C. Eldar
FedML
MQ
151
122
0
08 Feb 2021
Applications of Federated Learning in Smart Cities: Recent Advances, Taxonomy, and Open Challenges
Zhaohua Zheng
Yize Zhou
Yilong Sun
Zhang Wang
Boyi Liu
Keqiu Li
164
127
0
02 Feb 2021
CosSGD: Communication-Efficient Federated Learning with a Simple Cosine-Based Quantization
Yang He
Hui-Po Wang
M. Zenk
Mario Fritz
FedML
MQ
193
10
0
15 Dec 2020
Quantizing data for distributed learning
IEEE Journal on Selected Areas in Information Theory (JSAIT), 2020
Osama A. Hanna
Yahya H. Ezzeldin
Christina Fragouli
Suhas Diggavi
FedML
299
24
0
14 Dec 2020
Faster Non-Convex Federated Learning via Global and Local Momentum
Rudrajit Das
Anish Acharya
Abolfazl Hashemi
Sujay Sanghavi
Inderjit S. Dhillon
Ufuk Topcu
FedML
421
91
0
07 Dec 2020
Wyner-Ziv Estimators for Distributed Mean Estimation with Side Information and Optimization
IEEE Transactions on Information Theory (IEEE Trans. Inf. Theory), 2020
Prathamesh Mayekar
Shubham K. Jha
A. Suresh
Himanshu Tyagi
FedML
233
2
0
24 Nov 2020
FDNAS: Improving Data Privacy and Model Diversity in AutoML
Chunhui Zhang
Yongyuan Liang
Xiaoming Yuan
Lei Cheng
FedML
74
1
0
06 Nov 2020
A Linearly Convergent Algorithm for Decentralized Optimization: Sending Less Bits for Free!
D. Kovalev
Anastasia Koloskova
Martin Jaggi
Peter Richtárik
Sebastian U. Stich
180
79
0
03 Nov 2020
Towards Tight Communication Lower Bounds for Distributed Optimisation
Neural Information Processing Systems (NeurIPS), 2020
Dan Alistarh
Janne H. Korhonen
FedML
123
9
0
16 Oct 2020
Oort: Efficient Federated Learning via Guided Participant Selection
Fan Lai
Xiangfeng Zhu
H. Madhyastha
Mosharaf Chowdhury
FedML
OODD
396
312
0
12 Oct 2020
Fairness-aware Agnostic Federated Learning
SDM (SDM), 2020
Wei Du
Depeng Xu
Xintao Wu
Hanghang Tong
FedML
182
147
0
10 Oct 2020
Optimal Gradient Compression for Distributed and Federated Learning
Alyazeed Albasyoni
M. Safaryan
Laurent Condat
Peter Richtárik
FedML
119
69
0
07 Oct 2020
Artificial Intelligence for UAV-enabled Wireless Networks: A Survey
IEEE Open Journal of the Communications Society (OJ-COMSOC), 2020
Mohamed-Amine Lahmeri
Mustafa A. Kishk
Mohamed-Slim Alouini
189
117
0
24 Sep 2020
Communication Efficient Distributed Learning with Censored, Quantized, and Generalized Group ADMM
Chaouki Ben Issaid
Anis Elgabli
Jihong Park
M. Bennis
Mérouane Debbah
FedML
175
13
0
14 Sep 2020
FLFE: A Communication-Efficient and Privacy-Preserving Federated Feature Engineering Framework
Pei Fang
Zhendong Cai
Hui Chen
Qingjiang Shi
109
6
0
05 Sep 2020
ESMFL: Efficient and Secure Models for Federated Learning
Sheng Lin
Chenghong Wang
Hongjia Li
Jieren Deng
Yanzhi Wang
Caiwen Ding
FedML
89
6
0
03 Sep 2020
Shuffled Model of Federated Learning: Privacy, Communication and Accuracy Trade-offs
Antonious M. Girgis
Deepesh Data
Suhas Diggavi
Peter Kairouz
A. Suresh
FedML
167
26
0
17 Aug 2020
Mime: Mimicking Centralized Stochastic Algorithms in Federated Learning
Sai Praneeth Karimireddy
Martin Jaggi
Satyen Kale
M. Mohri
Sashank J. Reddi
Sebastian U. Stich
A. Suresh
FedML
458
232
0
08 Aug 2020
Communication-Efficient Federated Learning via Optimal Client Sampling
Mónica Ribero
H. Vikalo
FedML
155
103
0
30 Jul 2020
Breaking the Communication-Privacy-Accuracy Trilemma
Wei-Ning Chen
Peter Kairouz
Ayfer Özgür
387
128
0
22 Jul 2020
Federated Learning with Compression: Unified Analysis and Sharp Guarantees
Farzin Haddadpour
Mohammad Mahdi Kamani
Aryan Mokhtari
M. Mahdavi
FedML
375
304
0
02 Jul 2020
D2P-Fed: Differentially Private Federated Learning With Efficient Communication
Lun Wang
R. Jia
Dawn Song
FedML
195
0
0
22 Jun 2020
Distributed Newton Can Communicate Less and Resist Byzantine Workers
Avishek Ghosh
R. Maity
A. Mazumdar
FedML
132
35
0
15 Jun 2020
Characterizing Impacts of Heterogeneity in Federated Learning upon Large-Scale Smartphone Data
Chengxu Yang
Qipeng Wang
Mengwei Xu
Shangguang Wang
Kaigui Bian
Yunxin Liu
Xuanzhe Liu
138
24
0
12 Jun 2020
Byzantine-Resilient SGD in High Dimensions on Heterogeneous Data
Deepesh Data
Suhas Diggavi
FedML
128
43
0
16 May 2020
SQuARM-SGD: Communication-Efficient Momentum SGD for Decentralized Optimization
Navjot Singh
Deepesh Data
Jemin George
Suhas Diggavi
221
58
0
13 May 2020
Differentially Private Federated Learning with Laplacian Smoothing
Applied and Computational Harmonic Analysis (ACHA), 2020
Zhicong Liang
Bao Wang
Quanquan Gu
Stanley Osher
Xingtai Lv
FedML
108
11
0
01 May 2020
Communication-Efficient Distributed Deep Learning: A Comprehensive Survey
Zhenheng Tang
Shaoshuai Shi
Wei Wang
Yue Liu
Xiaowen Chu
190
54
0
10 Mar 2020
Previous
1
2
3
4
Next