Papers
Communities
Organizations
Events
Blog
Pricing
Search
Open menu
Home
Papers
1607.00133
Cited By
v1
v2 (latest)
Deep Learning with Differential Privacy
1 July 2016
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Deep Learning with Differential Privacy"
50 / 2,789 papers shown
Title
Differentially private sub-Gaussian location estimators
Marco Avella-Medina
Victor-Emmanuel Brunel
74
18
0
27 Jun 2019
Stolen Memories: Leveraging Model Memorization for Calibrated White-Box Membership Inference
Klas Leino
Matt Fredrikson
MIACV
135
280
0
27 Jun 2019
Prediction Poisoning: Towards Defenses Against DNN Model Stealing Attacks
Tribhuvanesh Orekondy
Bernt Schiele
Mario Fritz
AAML
100
167
0
26 Jun 2019
The Value of Collaboration in Convex Machine Learning with Differential Privacy
Nan Wu
Farhad Farokhi
David B. Smith
M. Kâafar
FedML
87
100
0
24 Jun 2019
Secure Multi-party Computation for Cloud-based Control
A. Alexandru
George J. Pappas
65
27
0
23 Jun 2019
The Cost of a Reductions Approach to Private Fair Optimization
Daniel Alabi
96
3
0
23 Jun 2019
G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators
Yunhui Long
Wei Ping
Zhuolin Yang
B. Kailkhura
Aston Zhang
C.A. Gunter
Yue Liu
128
75
0
21 Jun 2019
Reversible Privacy Preservation using Multi-level Encryption and Compressive Sensing
Mehmet Yamaç
Mete Ahishali
Nikolaos Passalis
Jenni Raitoharju
B. Sankur
Moncef Gabbouj
PICV
48
20
0
20 Jun 2019
Scalable and Differentially Private Distributed Aggregation in the Shuffled Model
Badih Ghazi
Rasmus Pagh
A. Velingker
FedML
105
99
0
19 Jun 2019
Trade-offs and Guarantees of Adversarial Representation Learning for Information Obfuscation
Han Zhao
Jianfeng Chi
Yuan Tian
Geoffrey J. Gordon
MIACV
73
2
0
19 Jun 2019
Membership Privacy for Machine Learning Models Through Knowledge Transfer
Virat Shejwalkar
Amir Houmansadr
100
10
0
15 Jun 2019
Effectiveness of Distillation Attack and Countermeasure on Neural Network Watermarking
Ziqi Yang
Hung Dang
E. Chang
AAML
129
34
0
14 Jun 2019
Does Learning Require Memorization? A Short Tale about a Long Tail
Vitaly Feldman
TDI
249
518
0
12 Jun 2019
Federated Learning for Emoji Prediction in a Mobile Keyboard
Swaroop Indra Ramaswamy
Rajiv Mathews
Kanishka Rao
Franccoise Beaufays
FedML
90
314
0
11 Jun 2019
Computing Tight Differential Privacy Guarantees Using FFT
A. Koskela
Hibiki Ito
Antti Honkela
22
1
0
07 Jun 2019
Average-Case Averages: Private Algorithms for Smooth Sensitivity and Mean Estimation
Mark Bun
Thomas Steinke
89
76
0
06 Jun 2019
Private Deep Learning with Teacher Ensembles
Lichao Sun
Yingbo Zhou
Ji Wang
Jia Li
R. Socher
Philip S. Yu
Caiming Xiong
FedML
34
2
0
05 Jun 2019
Interpretable and Differentially Private Predictions
Frederik Harder
Matthias Bauer
Mijung Park
FAtt
98
54
0
05 Jun 2019
Locally Differentially Private Data Collection and Analysis
Teng Wang
Jun Zhao
Xinyu Yang
Xuebin Ren
71
13
0
05 Jun 2019
Privacy-preserving Crowd-guided AI Decision-making in Ethical Dilemmas
Teng Wang
Jun Zhao
Han Yu
Jinyan Liu
Xinyu Yang
Xuebin Ren
Shuyu Shi
82
11
0
04 Jun 2019
SoK: Differential Privacies
Damien Desfontaines
Balázs Pejó
176
130
0
04 Jun 2019
On Privacy Protection of Latent Dirichlet Allocation Model Training
Fangyuan Zhao
Xuebin Ren
Shusen Yang
Xinyu Yang
71
5
0
04 Jun 2019
Towards Fair and Privacy-Preserving Federated Deep Models
Lingjuan Lyu
Jiangshan Yu
Karthik Nandakumar
Yitong Li
Xingjun Ma
Jiong Jin
Han Yu
Kee Siong Ng
FedML
52
20
0
04 Jun 2019
Heterogeneous Gaussian Mechanism: Preserving Differential Privacy in Deep Learning with Provable Robustness
Nhathai Phan
Minh Nhat Vu
Yang Liu
R. Jin
Dejing Dou
Xintao Wu
My T. Thai
AAML
69
52
0
02 Jun 2019
P3SGD: Patient Privacy Preserving SGD for Regularizing Deep CNNs in Pathological Image Classification
Bingzhe Wu
Shiwan Zhao
Guangyu Sun
Xiaolu Zhang
Zhong Su
C. Zeng
Zhihong Liu
82
41
0
30 May 2019
Data-Dependent Differentially Private Parameter Learning for Directed Graphical Models
Amrita Roy Chowdhury
Theodoros Rekatsinas
S. Jha
56
11
0
30 May 2019
Differential Privacy Has Disparate Impact on Model Accuracy
Eugene Bagdasaryan
Vitaly Shmatikov
187
489
0
28 May 2019
Shredder: Learning Noise Distributions to Protect Inference Privacy
Fatemehsadat Mireshghallah
Mohammadkazem Taram
Prakash Ramrakhyani
Dean Tullsen
H. Esmaeilzadeh
91
11
0
26 May 2019
Automatic Discovery of Privacy-Utility Pareto Fronts
Brendan Avent
Javier I. González
Tom Diethe
Andrei Paleyes
Borja Balle
FedML
96
29
0
26 May 2019
Privacy Risks of Securing Machine Learning Models against Adversarial Examples
Liwei Song
Reza Shokri
Prateek Mittal
SILM
MIACV
AAML
111
252
0
24 May 2019
Hypothesis Testing Interpretations and Renyi Differential Privacy
Borja Balle
Gilles Barthe
Marco Gaboardi
Justin Hsu
Tetsuya Sato
111
120
0
24 May 2019
Knowledge Transferring via Model Aggregation for Online Social Care
Shaoxiong Ji
Guodong Long
Shirui Pan
Tianqing Zhu
Jing Jiang
Sen Wang
Xue Li
51
0
0
19 May 2019
Towards Automatic Generation of Shareable Synthetic Clinical Notes Using Neural Language Models
Oren Melamud
Chaitanya P. Shivade
SyDa
MedIm
85
37
0
16 May 2019
Differentially Private Empirical Risk Minimization with Sparsity-Inducing Norms
K. S. S. Kumar
M. Deisenroth
82
6
0
13 May 2019
Differentially Private Learning with Adaptive Clipping
Galen Andrew
Om Thakkar
H. B. McMahan
Swaroop Ramaswamy
FedML
127
349
0
09 May 2019
MixMatch: A Holistic Approach to Semi-Supervised Learning
David Berthelot
Nicholas Carlini
Ian Goodfellow
Nicolas Papernot
Avital Oliver
Colin Raffel
275
3,068
0
06 May 2019
Genuinely Distributed Byzantine Machine Learning
El-Mahdi El-Mhamdi
R. Guerraoui
Arsany Guirguis
Lê Nguyên Hoang
Sébastien Rouault
FedML
OOD
85
19
0
05 May 2019
Free Gap Information from the Differentially Private Sparse Vector and Noisy Max Mechanisms
Zeyu Ding
Yuxin Wang
Qiang Yan
Daniel Kifer
101
14
0
29 Apr 2019
How You Act Tells a Lot: Privacy-Leakage Attack on Deep Reinforcement Learning
Xinlei Pan
Weiyao Wang
Xiaoshuai Zhang
Yue Liu
Jinfeng Yi
Basel Alomair
MIACV
151
26
0
24 Apr 2019
Distributed Differentially Private Computation of Functions with Correlated Noise
H. Imtiaz
Jafar Mohammadi
Anand D. Sarwate
OOD
78
10
0
22 Apr 2019
HARK Side of Deep Learning -- From Grad Student Descent to Automated Machine Learning
O. Gencoglu
M. Gils
E. Guldogan
Chamin Morikawa
Mehmet Süzen
M. Gruber
J. Leinonen
H. Huttunen
113
38
0
16 Apr 2019
CryptoNN: Training Neural Networks over Encrypted Data
Runhua Xu
J. Joshi
Chong Li
84
77
0
15 Apr 2019
Differential Privacy for Eye-Tracking Data
Ao Liu
Lirong Xia
A. Duchowski
Reynold J. Bailey
K. Holmqvist
Eakta Jain
79
74
0
15 Apr 2019
Distributed Layer-Partitioned Training for Privacy-Preserved Deep Learning
Chun-Hsien Yu
Chun-Nan Chou
Emily Chang
FedML
44
13
0
12 Apr 2019
What Storage Access Privacy is Achievable with Small Overhead?
Sarvar Patel
G. Persiano
Kevin Yeo
47
16
0
10 Apr 2019
Generative Models for Novelty Detection: Applications in abnormal event and situational change detection from data series
Mahdyar Ravanbakhsh
42
1
0
09 Apr 2019
Private Hierarchical Clustering and Efficient Approximation
Xianrui Meng
D. Papadopoulos
Alina Oprea
Nikos Triandopoulos
FedML
83
0
0
09 Apr 2019
Differentially Private Model Publishing for Deep Learning
Lei Yu
Ling Liu
C. Pu
Mehmet Emre Gursoy
Stacey Truex
FedML
146
270
0
03 Apr 2019
Maximal Information Leakage based Privacy Preserving Data Disclosure Mechanisms
Tianrui Xiao
Ashish Khisti
59
5
0
01 Apr 2019
Updates-Leak: Data Set Inference and Reconstruction Attacks in Online Learning
A. Salem
Apratim Bhattacharyya
Michael Backes
Mario Fritz
Yang Zhang
FedML
AAML
MIACV
124
262
0
01 Apr 2019
Previous
1
2
3
...
51
52
53
54
55
56
Next