Papers
Communities
Organizations
Events
Blog
Pricing
Search
Open menu
Home
Papers
1607.00133
Cited By
v1
v2 (latest)
Deep Learning with Differential Privacy
1 July 2016
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Deep Learning with Differential Privacy"
38 / 2,788 papers shown
Title
Attacking Automatic Video Analysis Algorithms: A Case Study of Google Cloud Video Intelligence API
Hossein Hosseini
Baicen Xiao
Andrew Clark
Radha Poovendran
AAML
72
24
0
14 Aug 2017
Per-instance Differential Privacy
Yu Wang
141
5
0
24 Jul 2017
Share your Model instead of your Data: Privacy Preserving Mimic Learning for Ranking
Mostafa Dehghani
H. Azarbonyad
J. Kamps
Maarten de Rijke
FedML
51
9
0
24 Jul 2017
Composition Properties of Inferential Privacy for Time-Series Data
Shuang Song
Kamalika Chaudhuri
51
14
0
10 Jul 2017
Stochastic, Distributed and Federated Optimization for Machine Learning
Jakub Konecný
FedML
83
38
0
04 Jul 2017
Preserving Differential Privacy in Convolutional Deep Belief Networks
Nhathai Phan
Xintao Wu
Dejing Dou
57
82
0
25 Jun 2017
Differentially Private Learning of Undirected Graphical Models using Collective Graphical Models
G. Bernstein
Ryan McKenna
Tao Sun
Daniel Sheldon
Michael Hay
G. Miklau
FedML
102
26
0
14 Jun 2017
Real-valued (Medical) Time Series Generation with Recurrent Conditional GANs
Cristóbal Esteban
Stephanie L. Hyland
Gunnar Rätsch
GAN
SyDa
MedIm
148
802
0
08 Jun 2017
Pain-Free Random Differential Privacy with Sensitivity Sampling
Benjamin I. P. Rubinstein
Francesco Aldà
49
42
0
08 Jun 2017
DeepSecure: Scalable Provably-Secure Deep Learning
B. Rouhani
M. Riazi
F. Koushanfar
FedML
91
415
0
24 May 2017
Continual Learning in Generative Adversarial Nets
Ari Seff
Alex Beatson
Daniel Suo
Han Liu
GAN
92
133
0
23 May 2017
Learning to Succeed while Teaching to Fail: Privacy in Closed Machine Learning Systems
Jure Sokolić
Qiang Qiu
M. Rodrigues
Guillermo Sapiro
FedML
39
5
0
23 May 2017
LOGAN: Membership Inference Attacks Against Generative Models
Jamie Hayes
Luca Melis
G. Danezis
Emiliano De Cristofaro
126
104
0
22 May 2017
Privacy-Preserving Visual Learning Using Doubly Permuted Homomorphic Encryption
Ryo Yonetani
Vishnu Boddeti
Kris Kitani
Yoichi Sato
PICV
FedML
103
67
0
07 Apr 2017
Private Learning on Networks: Part II
Shripad Gade
Nitin H. Vaidya
168
11
0
27 Mar 2017
A Hybrid Deep Learning Architecture for Privacy-Preserving Mobile Analytics
Seyed Ali Osia
Ali Shahin Shamsabadi
Sina Sajadmanesh
A. Taheri
Kleomenis Katevas
Hamid R. Rabiee
Nicholas D. Lane
Hamed Haddadi
107
237
0
08 Mar 2017
Differentially Private Bayesian Learning on Distributed Data
Mikko A. Heikkilä
Eemil Lagerspetz
Samuel Kaski
Kana Shimizu
Sasu Tarkoma
Antti Honkela
FedML
182
59
0
03 Mar 2017
Privacy-Preserving Personal Model Training
S. S. Rodríguez
Liang Wang
Jianxin R. Zhao
Richard Mortier
Hamed Haddadi
70
23
0
01 Mar 2017
Renyi Differential Privacy
Ilya Mironov
116
1,271
0
24 Feb 2017
Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning
Briland Hitaj
G. Ateniese
Fernando Perez-Cruz
FedML
209
1,417
0
24 Feb 2017
DEEProtect: Enabling Inference-based Access Control on Mobile Sensing Applications
Changchang Liu
Supriyo Chakraborty
Prateek Mittal
AAML
69
26
0
20 Feb 2017
Deep Reinforcement Learning: An Overview
Yuxi Li
OffRL
VLM
383
1,553
0
25 Jan 2017
Differentially Private Neighborhood-based Recommender Systems
Jun Wang
Qiang Tang
35
11
0
09 Jan 2017
Simple Black-Box Adversarial Perturbations for Deep Networks
Nina Narodytska
S. Kasiviswanathan
AAML
108
240
0
19 Dec 2016
Private Learning on Networks
Shripad Gade
Nitin H. Vaidya
FedML
36
15
0
15 Dec 2016
Practical Secure Aggregation for Federated Learning on User-Held Data
Keith Bonawitz
Vladimir Ivanov
Ben Kreuter
Antonio Marcedone
H. B. McMahan
Sarvar Patel
Daniel Ramage
Aaron Segal
Karn Seth
FedML
98
509
0
14 Nov 2016
Towards the Science of Security and Privacy in Machine Learning
Nicolas Papernot
Patrick McDaniel
Arunesh Sinha
Michael P. Wellman
AAML
111
474
0
11 Nov 2016
Variational Bayes In Private Settings (VIPS)
Mijung Park
James R. Foulds
Kamalika Chaudhuri
Max Welling
129
42
0
01 Nov 2016
Differentially Private Variational Inference for Non-conjugate Models
Hibiki Ito
O. Dikmen
Antti Honkela
FedML
97
48
0
27 Oct 2016
Membership Inference Attacks against Machine Learning Models
Reza Shokri
M. Stronati
Congzheng Song
Vitaly Shmatikov
SLR
MIALM
MIACV
370
4,182
0
18 Oct 2016
Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data
Nicolas Papernot
Martín Abadi
Ulfar Erlingsson
Ian Goodfellow
Kunal Talwar
222
1,028
0
18 Oct 2016
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
217
1,917
0
08 Oct 2016
Distributed Optimization for Client-Server Architecture with Negative Gradient Weights
Shripad Gade
Nitin H. Vaidya
64
4
0
12 Aug 2016
Concrete Problems in AI Safety
Dario Amodei
C. Olah
Jacob Steinhardt
Paul Christiano
John Schulman
Dandelion Mané
442
2,441
0
21 Jun 2016
Bolt-on Differential Privacy for Scalable Stochastic Gradient Descent-based Analytics
Xi Wu
Fengan Li
Arun Kumar
Kamalika Chaudhuri
S. Jha
Jeffrey F. Naughton
76
20
0
15 Jun 2016
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
690
18,071
0
17 Feb 2016
Technical Privacy Metrics: a Systematic Survey
Isabel Wagner
D. Eckhoff
125
174
0
01 Dec 2015
Learning Privately with Labeled and Unlabeled Examples
A. Beimel
Kobbi Nissim
Uri Stemmer
131
23
0
10 Jul 2014
Previous
1
2
3
...
54
55
56