Papers
Communities
Organizations
Events
Blog
Pricing
Search
Open menu
Home
Papers
1607.00133
Cited By
v1
v2 (latest)
Deep Learning with Differential Privacy
1 July 2016
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Deep Learning with Differential Privacy"
50 / 2,788 papers shown
Title
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
231
431
0
29 Nov 2018
MOBIUS: Model-Oblivious Binarized Neural Networks
Hiromasa Kitai
Jason Paul Cruz
Naoto Yanai
Naohisa Nishida
Tatsumi Oba
Yuji Unagami
Tadanori Teruya
Nuttapong Attrapadung
Takahiro Matsuda
Goichiro Hanaoka
66
7
0
29 Nov 2018
LEASGD: an Efficient and Privacy-Preserving Decentralized Algorithm for Distributed Learning
Hsin-Pai Cheng
P. Yu
Haojing Hu
Feng Yan
Shiyu Li
Hai Helen Li
Yiran Chen
FedML
91
23
0
27 Nov 2018
Generalised Differential Privacy for Text Document Processing
Natasha Fernandes
Mark Dras
Annabelle McIver
88
107
0
26 Nov 2018
Faster CryptoNets: Leveraging Sparsity for Real-World Encrypted Inference
Edward Chou
Josh Beal
Daniel Levy
Serena Yeung
Albert Haque
Li Fei-Fei
81
200
0
25 Nov 2018
A Fully Private Pipeline for Deep Learning on Electronic Health Records
Edward Chou
Thao Nguyen
Josh Beal
Albert Haque
Li Fei-Fei
SyDa
FedML
38
6
0
25 Nov 2018
Biscotti: A Ledger for Private and Secure Peer-to-Peer Machine Learning
Muhammad Shayan
Clement Fung
Chris J. M. Yoon
Ivan Beschastnikh
FedML
115
82
0
24 Nov 2018
Differential Private Stack Generalization with an Application to Diabetes Prediction
Quanming Yao
Xiawei Guo
James T. Kwok
Wei-Wei Tu
Yuqiang Chen
Wenyuan Dai
Qiang Yang
61
19
0
23 Nov 2018
FALCON: A Fourier Transform Based Approach for Fast and Secure Convolutional Neural Network Predictions
Shaohua Li
Kaiping Xue
Chenkai Ding
Xindi Gao
David S. L. Wei
Tao Wan
F. Wu
65
68
0
20 Nov 2018
Private Selection from Private Candidates
Jingcheng Liu
Kunal Talwar
79
134
0
19 Nov 2018
Private Model Compression via Knowledge Distillation
Ji Wang
Weidong Bao
Lichao Sun
Xiaomin Zhu
Bokai Cao
Philip S. Yu
FedML
88
120
0
13 Nov 2018
Boosting Model Performance through Differentially Private Model Aggregation
Sophia Collet
Robert Dadashi
Z. Karam
Chang-rui Liu
Parinaz Sobhani
Yevgeniy Vahlis
Ji Chao Zhang
FedML
47
1
0
12 Nov 2018
A generic framework for privacy preserving deep learning
Wenbo Guo
Yunzhe Tao
Morten Dahl
Sui Huang
Masashi Sugiyama
Daniel Rueckert
Lin Lin
FedML
154
438
0
09 Nov 2018
Mobile Sensor Data Anonymization
Mohammad Malekzadeh
R. Clegg
Andrea Cavallaro
Hamed Haddadi
210
214
0
26 Oct 2018
Multi-Institutional Deep Learning Modeling Without Sharing Patient Data: A Feasibility Study on Brain Tumor Segmentation
Micah J. Sheller
G. A. Reina
Brandon Edwards
Jason Martin
Spyridon Bakas
FedML
127
474
0
10 Oct 2018
Privacy-Preserving Multiparty Learning For Logistic Regression
Wei Du
Ang Li
Qinghua Li
30
16
0
04 Oct 2018
Privacy and Utility Tradeoff in Approximate Differential Privacy
Quan Geng
Wei Ding
Ruiqi Guo
Sanjiv Kumar
95
23
0
01 Oct 2018
Privado: Practical and Secure DNN Inference with Enclaves
Karan Grover
Shruti Tople
Shweta Shinde
Ranjita Bhagwan
Ramachandran Ramjee
FedML
SILM
82
46
0
01 Oct 2018
Adversarial Attacks and Defences: A Survey
Anirban Chakraborty
Manaar Alam
Vishal Dey
Anupam Chattopadhyay
Debdeep Mukhopadhyay
AAML
OOD
167
684
0
28 Sep 2018
Optimal Noise-Adding Mechanism in Additive Differential Privacy
Quan Geng
Wei Ding
Ruiqi Guo
Sanjiv Kumar
107
34
0
26 Sep 2018
Understanding Compressive Adversarial Privacy
Xiao Chen
Peter Kairouz
Ram Rajagopal
67
12
0
21 Sep 2018
Towards Efficient and Secure Delivery of Data for Training and Inference with Privacy-Preserving
Juncheng Shen
Juzheng Liu
Yiran Chen
Hai Helen Li
FedML
70
1
0
20 Sep 2018
Model-Protected Multi-Task Learning
Jian Liang
Ziqi Liu
Jiayu Zhou
Xiaoqian Jiang
Changshui Zhang
Fei Wang
86
13
0
18 Sep 2018
Déjà Vu: an empirical evaluation of the memorization properties of ConvNets
Alexandre Sablayrolles
Matthijs Douze
Cordelia Schmid
Hervé Jégou
54
18
0
17 Sep 2018
Deep Learning in Information Security
S. Thaler
Vlado Menkovski
M. Petković
67
10
0
12 Sep 2018
Learning Rate Adaptation for Federated and Differentially Private Learning
A. Koskela
Antti Honkela
FedML
93
27
0
11 Sep 2018
Deep Learning Towards Mobile Applications
Ji Wang
Bokai Cao
Philip S. Yu
Lichao Sun
Weidong Bao
Xiaomin Zhu
HAI
97
99
0
10 Sep 2018
Not Just Privacy: Improving Performance of Private Deep Learning in Mobile Cloud
Ji Wang
Jianguo Zhang
Weidong Bao
Xiaomin Zhu
Bokai Cao
Philip S. Yu
76
196
0
10 Sep 2018
Privacy-Preserving Deep Learning via Weight Transmission
L. T. Phong
T. Phuong
FedML
78
87
0
10 Sep 2018
Decentralized Differentially Private Without-Replacement Stochastic Gradient Descent
Richeng Jin
Xiaofan He
H. Dai
FedML
80
2
0
08 Sep 2018
Differentially Private Bayesian Inference for Exponential Families
G. Bernstein
Daniel Sheldon
99
48
0
06 Sep 2018
DP-ADMM: ADMM-based Distributed Learning with Differential Privacy
Zonghao Huang
Rui Hu
Yuanxiong Guo
Eric Chan-Tin
Yanmin Gong
FedML
149
200
0
30 Aug 2018
Concentrated Differentially Private Gradient Descent with Adaptive per-Iteration Privacy Budget
Jaewoo Lee
Daniel Kifer
61
158
0
28 Aug 2018
Privacy-preserving Neural Representations of Text
Maximin Coavoux
Shashi Narayan
Shay B. Cohen
AAML
82
118
0
28 Aug 2018
Privacy Amplification by Iteration
Vitaly Feldman
Ilya Mironov
Kunal Talwar
Abhradeep Thakurta
FedML
120
177
0
20 Aug 2018
Subsampled Rényi Differential Privacy and Analytical Moments Accountant
Yu Wang
Borja Balle
S. Kasiviswanathan
137
407
0
31 Jul 2018
Security and Privacy Issues in Deep Learning
Ho Bae
Jaehee Jang
Dahuin Jung
Hyemi Jang
Heonseok Ha
Hyungyu Lee
Sungroh Yoon
SILM
MIACV
158
79
0
31 Jul 2018
Towards Privacy-Preserving Visual Recognition via Adversarial Training: A Pilot Study
Zhenyu Wu
Zhangyang Wang
Zhaowen Wang
Hailin Jin
AAML
PICV
102
153
0
22 Jul 2018
Efficient Deep Learning on Multi-Source Private Data
Nicholas Hynes
Raymond Cheng
Basel Alomair
FedML
96
102
0
17 Jul 2018
Machine Learning with Membership Privacy using Adversarial Regularization
Milad Nasr
Reza Shokri
Amir Houmansadr
FedML
MIACV
112
478
0
16 Jul 2018
Neural Networks Regularization Through Representation Learning
Soufiane Belharbi
OOD
SSL
39
2
0
13 Jul 2018
Differentially-Private "Draw and Discard" Machine Learning
Vasyl Pihur
Aleksandra Korolova
Frederick Liu
Subhash Sankuratripati
M. Yung
Dachuan Huang
Ruogu Zeng
FedML
111
39
0
11 Jul 2018
Differentially Private False Discovery Rate Control
Cynthia Dwork
Weijie J. Su
Li Zhang
84
23
0
11 Jul 2018
Privacy-preserving Machine Learning through Data Obfuscation
Tianwei Zhang
Zecheng He
R. Lee
82
80
0
05 Jul 2018
Privacy Amplification by Subsampling: Tight Analyses via Couplings and Divergences
Borja Balle
Gilles Barthe
Marco Gaboardi
97
397
0
04 Jul 2018
How To Backdoor Federated Learning
Eugene Bagdasaryan
Andreas Veit
Yiqing Hua
D. Estrin
Vitaly Shmatikov
SILM
FedML
200
1,947
0
02 Jul 2018
Gradient Similarity: An Explainable Approach to Detect Adversarial Attacks against Deep Learning
J. Dhaliwal
S. Shintre
AAML
59
15
0
27 Jun 2018
The Right Complexity Measure in Locally Private Estimation: It is not the Fisher Information
John C. Duchi
Feng Ruan
97
51
0
14 Jun 2018
cpSGD: Communication-efficient and differentially-private distributed SGD
Naman Agarwal
A. Suresh
Felix X. Yu
Sanjiv Kumar
H. B. McMahan
FedML
176
492
0
27 May 2018
AgileNet: Lightweight Dictionary-based Few-shot Learning
M. Ghasemzadeh
Fang Lin
B. Rouhani
F. Koushanfar
Ke Huang
53
6
0
21 May 2018
Previous
1
2
3
...
53
54
55
56
Next