Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1607.00133
Cited By
Deep Learning with Differential Privacy
1 July 2016
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Learning with Differential Privacy"
50 / 1,131 papers shown
Title
Differentially private anonymized histograms
A. Suresh
PICV
14
22
0
08 Oct 2019
Federated Learning of N-gram Language Models
Mingqing Chen
A. Suresh
Rajiv Mathews
Adeline Wong
Cyril Allauzen
F. Beaufays
Michael Riley
FedML
24
74
0
08 Oct 2019
Differential Privacy-enabled Federated Learning for Sensitive Health Data
Olivia Choudhury
A. Gkoulalas-Divanis
Theodoros Salonidis
I. Sylla
Yoonyoung Park
Grace Hsu
Amar K. Das
FedML
OOD
28
175
0
07 Oct 2019
PPGAN: Privacy-preserving Generative Adversarial Network
Yi Liu
Jialiang Peng
James J. Q. Yu
Yi Wu
32
70
0
04 Oct 2019
Privacy-preserving Federated Brain Tumour Segmentation
Wenqi Li
Fausto Milletarì
Daguang Xu
Nicola Rieke
Jonny Hancox
...
Maximilian Baust
Yan Cheng
Sébastien Ourselin
M. Jorge Cardoso
Andrew Feng
FedML
31
475
0
02 Oct 2019
Synthetic Data for Deep Learning
Sergey I. Nikolenko
51
349
0
25 Sep 2019
Private Aggregation from Fewer Anonymous Messages
Badih Ghazi
Pasin Manurangsi
Rasmus Pagh
A. Velingker
FedML
62
55
0
24 Sep 2019
Optimal query complexity for private sequential learning against eavesdropping
Jiaming Xu
Kuang Xu
Dana Yang
FedML
33
1
0
21 Sep 2019
Synthesis of Realistic ECG using Generative Adversarial Networks
Anne Marie Delaney
Eoin Brophy
T. Ward
32
79
0
19 Sep 2019
Rényi Differential Privacy of the Sampled Gaussian Mechanism
Ilya Mironov
Kunal Talwar
Li Zhang
28
278
0
28 Aug 2019
Private Stochastic Convex Optimization with Optimal Rates
Raef Bassily
Vitaly Feldman
Kunal Talwar
Abhradeep Thakurta
23
237
0
27 Aug 2019
Local Differential Privacy for Deep Learning
Pathum Chamikara Mahawaga Arachchige
P. Bertók
I. Khalil
Dongxi Liu
S. Çamtepe
Mohammed Atiquzzaman
41
220
0
08 Aug 2019
GDRQ: Group-based Distribution Reshaping for Quantization
Haibao Yu
Tuopu Wen
Guangliang Cheng
Jiankai Sun
Qi Han
Jianping Shi
MQ
33
3
0
05 Aug 2019
ER-AE: Differentially Private Text Generation for Authorship Anonymization
Haohan Bo
Steven H. H. Ding
Benjamin C. M. Fung
Farkhund Iqbal
DeLMO
39
38
0
20 Jul 2019
Helen: Maliciously Secure Coopetitive Learning for Linear Models
Wenting Zheng
Raluca A. Popa
Joseph E. Gonzalez
Ion Stoica
FedML
27
144
0
16 Jul 2019
Privacy-Preserving Classification with Secret Vector Machines
Valentin Hartmann
Konark Modi
J. M. Pujol
Robert West
23
14
0
08 Jul 2019
Diffprivlib: The IBM Differential Privacy Library
N. Holohan
S. Braghin
Pól Mac Aonghusa
Killian Levacher
SyDa
31
129
0
04 Jul 2019
DP-LSSGD: A Stochastic Optimization Method to Lift the Utility in Privacy-Preserving ERM
Bao Wang
Quanquan Gu
M. Boedihardjo
Farzin Barekat
Stanley J. Osher
22
25
0
28 Jun 2019
Prediction Poisoning: Towards Defenses Against DNN Model Stealing Attacks
Tribhuvanesh Orekondy
Bernt Schiele
Mario Fritz
AAML
19
164
0
26 Jun 2019
The Value of Collaboration in Convex Machine Learning with Differential Privacy
Nan Wu
Farhad Farokhi
David B. Smith
M. Kâafar
FedML
25
96
0
24 Jun 2019
G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators
Yunhui Long
Wei Ping
Zhuolin Yang
B. Kailkhura
Aston Zhang
C.A. Gunter
Bo Li
22
72
0
21 Jun 2019
Reversible Privacy Preservation using Multi-level Encryption and Compressive Sensing
Mehmet Yamaç
Mete Ahishali
Nikolaos Passalis
Jenni Raitoharju
B. Sankur
Moncef Gabbouj
PICV
11
20
0
20 Jun 2019
Scalable and Differentially Private Distributed Aggregation in the Shuffled Model
Badih Ghazi
Rasmus Pagh
A. Velingker
FedML
29
98
0
19 Jun 2019
Membership Privacy for Machine Learning Models Through Knowledge Transfer
Virat Shejwalkar
Amir Houmansadr
22
10
0
15 Jun 2019
Effectiveness of Distillation Attack and Countermeasure on Neural Network Watermarking
Ziqi Yang
Hung Dang
E. Chang
AAML
27
34
0
14 Jun 2019
Does Learning Require Memorization? A Short Tale about a Long Tail
Vitaly Feldman
TDI
61
483
0
12 Jun 2019
Federated Learning for Emoji Prediction in a Mobile Keyboard
Swaroop Indra Ramaswamy
Rajiv Mathews
Kanishka Rao
Franccoise Beaufays
FedML
23
309
0
11 Jun 2019
Average-Case Averages: Private Algorithms for Smooth Sensitivity and Mean Estimation
Mark Bun
Thomas Steinke
47
74
0
06 Jun 2019
Locally Differentially Private Data Collection and Analysis
Teng Wang
Jun Zhao
Xinyu Yang
Xuebin Ren
27
13
0
05 Jun 2019
SoK: Differential Privacies
Damien Desfontaines
Balázs Pejó
38
122
0
04 Jun 2019
On Privacy Protection of Latent Dirichlet Allocation Model Training
Fangyuan Zhao
Xuebin Ren
Shusen Yang
Xinyu Yang
22
5
0
04 Jun 2019
Data-Dependent Differentially Private Parameter Learning for Directed Graphical Models
Amrita Roy Chowdhury
Theodoros Rekatsinas
S. Jha
17
10
0
30 May 2019
Differential Privacy Has Disparate Impact on Model Accuracy
Eugene Bagdasaryan
Vitaly Shmatikov
34
467
0
28 May 2019
Privacy Risks of Securing Machine Learning Models against Adversarial Examples
Liwei Song
Reza Shokri
Prateek Mittal
SILM
MIACV
AAML
6
235
0
24 May 2019
Hypothesis Testing Interpretations and Renyi Differential Privacy
Borja Balle
Gilles Barthe
Marco Gaboardi
Justin Hsu
Tetsuya Sato
17
108
0
24 May 2019
Differentially Private Empirical Risk Minimization with Sparsity-Inducing Norms
K. S. S. Kumar
M. Deisenroth
19
6
0
13 May 2019
Differentially Private Learning with Adaptive Clipping
Galen Andrew
Om Thakkar
H. B. McMahan
Swaroop Ramaswamy
FedML
30
331
0
09 May 2019
How You Act Tells a Lot: Privacy-Leakage Attack on Deep Reinforcement Learning
Xinlei Pan
Weiyao Wang
Xiaoshuai Zhang
Bo Li
Jinfeng Yi
D. Song
MIACV
69
26
0
24 Apr 2019
HARK Side of Deep Learning -- From Grad Student Descent to Automated Machine Learning
O. Gencoglu
M. Gils
E. Guldogan
Chamin Morikawa
Mehmet Süzen
M. Gruber
J. Leinonen
H. Huttunen
11
36
0
16 Apr 2019
Differentially Private Model Publishing for Deep Learning
Lei Yu
Ling Liu
C. Pu
Mehmet Emre Gursoy
Stacey Truex
FedML
15
264
0
03 Apr 2019
Scalable Differential Privacy with Certified Robustness in Adversarial Learning
Nhathai Phan
My T. Thai
Han Hu
R. Jin
Tong Sun
Dejing Dou
37
14
0
23 Mar 2019
Privacy Preserving Image-Based Localization
Pablo Speciale
Johannes L. Schonberger
S. B. Kang
Sudipta N. Sinha
Marc Pollefeys
3DPC
26
83
0
13 Mar 2019
Robust and Communication-Efficient Federated Learning from Non-IID Data
Felix Sattler
Simon Wiedemann
K. Müller
Wojciech Samek
FedML
24
1,337
0
07 Mar 2019
AutoGAN-based Dimension Reduction for Privacy Preservation
Hung Nguyen
Di Zhuang
Pei-Yuan Wu
Jerome Chang
22
33
0
27 Feb 2019
Evaluating Differentially Private Machine Learning in Practice
Bargav Jayaraman
David Evans
15
7
0
24 Feb 2019
Adversarial Neural Network Inversion via Auxiliary Knowledge Alignment
Ziqi Yang
E. Chang
Zhenkai Liang
MLAU
33
60
0
22 Feb 2019
On Lightweight Privacy-Preserving Collaborative Learning for IoT Objects
Linshan Jiang
Rui Tan
Xin Lou
Guosheng Lin
16
45
0
13 Feb 2019
CodedPrivateML: A Fast and Privacy-Preserving Framework for Distributed Machine Learning
Jinhyun So
Başak Güler
A. Avestimehr
FedML
30
114
0
02 Feb 2019
Privacy-preserving Q-Learning with Functional Noise in Continuous State Spaces
Baoxiang Wang
N. Hegde
17
64
0
30 Jan 2019
Differentially Private Markov Chain Monte Carlo
Mikko A. Heikkilä
Joonas Jälkö
O. Dikmen
Antti Honkela
27
25
0
29 Jan 2019
Previous
1
2
3
...
20
21
22
23
Next