Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1607.00133
Cited By
Deep Learning with Differential Privacy
1 July 2016
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Learning with Differential Privacy"
50 / 1,132 papers shown
Title
Model Inversion Attacks against Graph Neural Networks
Zaixin Zhang
Qi Liu
Zhenya Huang
Hao Wang
Cheekong Lee
Enhong
AAML
28
35
0
16 Sep 2022
Differentially Private Estimation of Hawkes Process
Simiao Zuo
Tianyi Liu
Tuo Zhao
H. Zha
26
1
0
15 Sep 2022
M^4I: Multi-modal Models Membership Inference
Pingyi Hu
Zihan Wang
Ruoxi Sun
Hu Wang
Minhui Xue
44
26
0
15 Sep 2022
Cocktail Party Attack: Breaking Aggregation-Based Privacy in Federated Learning using Independent Component Analysis
Sanjay Kariyappa
Chuan Guo
Kiwan Maeng
Wenjie Xiong
G. E. Suh
Moinuddin K. Qureshi
Hsien-Hsin S. Lee
FedML
31
29
0
12 Sep 2022
Bridging the Gap: Differentially Private Equivariant Deep Learning for Medical Image Analysis
Florian A. Hölzl
Daniel Rueckert
Georgios Kaissis
FedML
MedIm
42
1
0
09 Sep 2022
Unraveling the Connections between Privacy and Certified Robustness in Federated Learning Against Poisoning Attacks
Chulin Xie
Yunhui Long
Pin-Yu Chen
Qinbin Li
Arash Nourian
Sanmi Koyejo
Bo Li
FedML
68
13
0
08 Sep 2022
Bayesian and Frequentist Semantics for Common Variations of Differential Privacy: Applications to the 2020 Census
Daniel Kifer
John M. Abowd
Robert Ashmead
Ryan Cumings-Menon
Philip Leclerc
Ashwin Machanavajjhala
William Sexton
Pavel I Zhuravlev
59
26
0
07 Sep 2022
On the utility and protection of optimization with differential privacy and classic regularization techniques
Eugenio Lomurno
Matteo matteucci
43
9
0
07 Sep 2022
How Much User Context Do We Need? Privacy by Design in Mental Health NLP Application
Ramit Sawhney
A. Neerkaje
Ivan Habernal
Lucie Flek
31
3
0
05 Sep 2022
Joint Linear and Nonlinear Computation across Functions for Efficient Privacy-Preserving Neural Network Inference
Qiao Zhang
Tao Xiang
Chunsheng Xin
Biwen Chen
Hongyi Wu
39
1
0
04 Sep 2022
Data Provenance via Differential Auditing
Xin Mu
Ming Pang
Feida Zhu
19
1
0
04 Sep 2022
Are Attribute Inference Attacks Just Imputation?
Bargav Jayaraman
David Evans
TDI
MIACV
42
47
0
02 Sep 2022
Membership Inference Attacks by Exploiting Loss Trajectory
Yiyong Liu
Zhengyu Zhao
Michael Backes
Yang Zhang
27
98
0
31 Aug 2022
Data Isotopes for Data Provenance in DNNs
Emily Wenger
Xiuyu Li
Ben Y. Zhao
Vitaly Shmatikov
25
12
0
29 Aug 2022
Federated and Privacy-Preserving Learning of Accounting Data in Financial Statement Audits
Marco Schreyer
Timur Sattarov
Damian Borth
MLAU
36
15
0
26 Aug 2022
On Differential Privacy for Federated Learning in Wireless Systems with Multiple Base Stations
Nima Tavangaran
Mingzhe Chen
Zhaohui Yang
J. M. B. D. Silva
H. Vincent Poor
FedML
33
4
0
25 Aug 2022
A Platform-Free Proof of Federated Learning Consensus Mechanism for Sustainable Blockchains
Yuntao Wang
Hai-xia Peng
Zhou Su
Tom H. Luan
A. Benslimane
Yuan Wu
58
57
0
23 Aug 2022
Membership-Doctor: Comprehensive Assessment of Membership Inference Against Machine Learning Models
Xinlei He
Zheng Li
Weilin Xu
Cory Cornelius
Yang Zhang
MIACV
38
24
0
22 Aug 2022
MUDGUARD: Taming Malicious Majorities in Federated Learning using Privacy-Preserving Byzantine-Robust Clustering
Rui Wang
Xingkai Wang
H. Chen
Jérémie Decouchant
S. Picek
Ziqiang Liu
K. Liang
40
1
0
22 Aug 2022
Cluster Based Secure Multi-Party Computation in Federated Learning for Histopathology Images
Seyedeh Maryam Hosseini
Milad Sikaroudi
Morteza Babaie
H. R. Tizhoosh
OOD
FedML
21
10
0
21 Aug 2022
The Saddle-Point Accountant for Differential Privacy
Wael Alghamdi
S. Asoodeh
Flavio du Pin Calmon
Juan Felipe Gomez
O. Kosut
Lalitha Sankar
Fei Wei
43
7
0
20 Aug 2022
Private, Efficient, and Accurate: Protecting Models Trained by Multi-party Learning with Differential Privacy
Wenqiang Ruan
Ming Xu
Wenjing Fang
Li Wang
Lei Wang
Wei Han
42
12
0
18 Aug 2022
Differential Privacy in Natural Language Processing: The Story So Far
Oleksandra Klymenko
Stephen Meisenbacher
Florian Matthes
34
15
0
17 Aug 2022
An Empirical Study on the Membership Inference Attack against Tabular Data Synthesis Models
Jihyeon Hyeong
Jayoung Kim
Noseong Park
S. Jajodia
MIACV
30
13
0
17 Aug 2022
Private Estimation with Public Data
Alex Bie
Gautam Kamath
Vikrant Singhal
41
28
0
16 Aug 2022
Friendly Noise against Adversarial Noise: A Powerful Defense against Data Poisoning Attacks
Tianwei Liu
Yu Yang
Baharan Mirzasoleiman
AAML
39
27
0
14 Aug 2022
Practical Vertical Federated Learning with Unsupervised Representation Learning
Zhaomin Wu
Yue Liu
Bingsheng He
FedML
40
38
0
13 Aug 2022
Is Your Model Sensitive? SPeDaC: A New Benchmark for Detecting and Classifying Sensitive Personal Data
Gaia Gambarelli
Aldo Gangemi
Rocco Tripodi
32
8
0
12 Aug 2022
Valid Inference after Causal Discovery
Paula Gradu
Tijana Zrnic
Yixin Wang
Michael I. Jordan
CML
31
8
0
11 Aug 2022
Safety and Performance, Why not Both? Bi-Objective Optimized Model Compression toward AI Software Deployment
Jie Zhu
Leye Wang
Xiao Han
40
9
0
11 Aug 2022
Stronger Privacy Amplification by Shuffling for Rényi and Approximate Differential Privacy
Vitaly Feldman
Audra McMillan
Kunal Talwar
FedML
39
47
0
09 Aug 2022
How Much Privacy Does Federated Learning with Secure Aggregation Guarantee?
A. Elkordy
Jiang Zhang
Yahya H. Ezzeldin
Konstantinos Psounis
A. Avestimehr
FedML
40
38
0
03 Aug 2022
Differentially Private Vertical Federated Clustering
Zitao Li
Tianhao Wang
Ninghui Li
FedML
55
18
0
02 Aug 2022
On the Evaluation of User Privacy in Deep Neural Networks using Timing Side Channel
Shubhi Shukla
Manaar Alam
Sarani Bhattacharya
Debdeep Mukhopadhyay
Pabitra Mitra
AAML
27
2
0
01 Aug 2022
AI Augmented Edge and Fog Computing: Trends and Challenges
Shreshth Tuli
Fatemeh Mirhakimi
Samodha Pallewatta
Syed Zawad
G. Casale
B. Javadi
Feng Yan
Rajkumar Buyya
N. Jennings
31
56
0
01 Aug 2022
Towards Communication-efficient Vertical Federated Learning Training via Cache-enabled Local Updates
Fangcheng Fu
Xupeng Miao
Jiawei Jiang
Huanran Xue
Tengjiao Wang
FedML
32
21
0
29 Jul 2022
Content-Aware Differential Privacy with Conditional Invertible Neural Networks
Malte Tolle
Ullrich Kothe
F. André
B. Meder
Sandy Engelhardt
27
5
0
29 Jul 2022
Lifelong DP: Consistently Bounded Differential Privacy in Lifelong Machine Learning
Phung Lai
Han Hu
Nhathai Phan
Ruoming Jin
My T. Thai
An M. Chen
25
2
0
26 Jul 2022
BPFISH: Blockchain and Privacy-preserving FL Inspired Smart Healthcare
Moirangthem Biken Singh
A. Pratap
OOD
37
3
0
24 Jul 2022
Improving Privacy-Preserving Vertical Federated Learning by Efficient Communication with ADMM
Chulin Xie
Pin-Yu Chen
Qinbin Li
Arash Nourian
Ce Zhang
Bo Li
FedML
47
16
0
20 Jul 2022
FedDM: Iterative Distribution Matching for Communication-Efficient Federated Learning
Yuanhao Xiong
Ruochen Wang
Minhao Cheng
Felix X. Yu
Cho-Jui Hsieh
FedML
DD
50
82
0
20 Jul 2022
Training Large-Vocabulary Neural Language Models by Private Federated Learning for Resource-Constrained Devices
Mingbin Xu
Congzheng Song
Ye Tian
Neha Agrawal
Filip Granqvist
...
Shiyi Han
Yaqiao Deng
Leo Liu
Anmol Walia
Alex Jin
FedML
17
22
0
18 Jul 2022
FLAIR: Federated Learning Annotated Image Repository
Congzheng Song
Filip Granqvist
Kunal Talwar
FedML
29
28
0
18 Jul 2022
Protecting Global Properties of Datasets with Distribution Privacy Mechanisms
Michelle Chen
O. Ohrimenko
FedML
24
12
0
18 Jul 2022
Sotto Voce: Federated Speech Recognition with Differential Privacy Guarantees
Michael Shoemate
Kevin Jett
Ethan Cowan
Sean Colbath
James Honaker
P. Muthukumar
FedML
37
5
0
16 Jul 2022
Hercules: Boosting the Performance of Privacy-preserving Federated Learning
Guowen Xu
Xingshuo Han
Shengmin Xu
Tianwei Zhang
Hongwei Li
Xinyi Huang
R. Deng
FedML
40
16
0
11 Jul 2022
Faster Privacy Accounting via Evolving Discretization
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
72
14
0
10 Jul 2022
Connect the Dots: Tighter Discrete Approximations of Privacy Loss Distributions
Vadym Doroshenko
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
36
40
0
10 Jul 2022
Scaling Private Deep Learning with Low-Rank and Sparse Gradients
Ryuichi Ito
Seng Pei Liew
Tsubasa Takahashi
Yuya Sasaki
Makoto Onizuka
30
1
0
06 Jul 2022
Federated and Transfer Learning: A Survey on Adversaries and Defense Mechanisms
Ehsan Hallaji
R. Razavi-Far
M. Saif
AAML
FedML
34
13
0
05 Jul 2022
Previous
1
2
3
...
9
10
11
...
21
22
23
Next