ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.11580
26
2

Securing Health Data on the Blockchain: A Differential Privacy and Federated Learning Framework

19 May 2024
Daniel Commey
Sena Hounsinou
Garth V. Crosby
ArXivPDFHTML
Abstract

This study proposes a framework to enhance privacy in Blockchain-based Internet of Things (BIoT) systems used in the healthcare sector. The framework addresses the challenge of leveraging health data for analytics while protecting patient privacy. To achieve this, the study integrates Differential Privacy (DP) with Federated Learning (FL) to protect sensitive health data collected by IoT nodes. The proposed framework utilizes dynamic personalization and adaptive noise distribution strategies to balance privacy and data utility. Additionally, blockchain technology ensures secure and transparent aggregation and storage of model updates. Experimental results on the SVHN dataset demonstrate that the proposed framework achieves strong privacy guarantees against various attack scenarios while maintaining high accuracy in health analytics tasks. For 15 rounds of federated learning with an epsilon value of 8.0, the model obtains an accuracy of 64.50%. The blockchain integration, utilizing Ethereum, Ganache, Web3.py, and IPFS, exhibits an average transaction latency of around 6 seconds and consistent gas consumption across rounds, validating the practicality and feasibility of the proposed approach.

View on arXiv
Comments on this paper