ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.06565
  4. Cited By
Concrete Problems in AI Safety

Concrete Problems in AI Safety

21 June 2016
Dario Amodei
C. Olah
Jacob Steinhardt
Paul Christiano
John Schulman
Dandelion Mané
ArXivPDFHTML

Papers citing "Concrete Problems in AI Safety"

50 / 482 papers shown
Title
Safe Model-based Control from Signal Temporal Logic Specifications Using
  Recurrent Neural Networks
Safe Model-based Control from Signal Temporal Logic Specifications Using Recurrent Neural Networks
Wenliang Liu
Mirai Nishioka
C. Belta
35
5
0
29 Mar 2021
Maximum Entropy RL (Provably) Solves Some Robust RL Problems
Maximum Entropy RL (Provably) Solves Some Robust RL Problems
Benjamin Eysenbach
Sergey Levine
OOD
50
176
0
10 Mar 2021
Maximum Likelihood Constraint Inference from Stochastic Demonstrations
Maximum Likelihood Constraint Inference from Stochastic Demonstrations
D. L. McPherson
Kaylene C. Stocking
S. Shankar Sastry
13
22
0
24 Feb 2021
Few-shot Conformal Prediction with Auxiliary Tasks
Few-shot Conformal Prediction with Auxiliary Tasks
Adam Fisch
Tal Schuster
Tommi Jaakkola
Regina Barzilay
189
54
0
17 Feb 2021
Sliced Multi-Marginal Optimal Transport
Sliced Multi-Marginal Optimal Transport
Samuel N. Cohen
Alexander Terenin
Yannik Pitcan
Brandon Amos
M. Deisenroth
K. S. S. Kumar
OT
23
9
0
14 Feb 2021
One-Class Classification: A Survey
One-Class Classification: A Survey
Pramuditha Perera
Poojan Oza
Vishal M. Patel
54
112
0
08 Jan 2021
Multi-Principal Assistance Games: Definition and Collegial Mechanisms
Multi-Principal Assistance Games: Definition and Collegial Mechanisms
Arnaud Fickinger
Simon Zhuang
Andrew Critch
Dylan Hadfield-Menell
Stuart J. Russell
19
4
0
29 Dec 2020
Classification with Strategically Withheld Data
Classification with Strategically Withheld Data
A. Krishnaswamy
Haoming Li
David B Rein
Hanrui Zhang
Vincent Conitzer
13
15
0
18 Dec 2020
Open Problems in Cooperative AI
Open Problems in Cooperative AI
Allan Dafoe
Edward Hughes
Yoram Bachrach
Tantum Collins
Kevin R. McKee
Joel Z Leibo
Kate Larson
T. Graepel
42
200
0
15 Dec 2020
Bayes DistNet -- A Robust Neural Network for Algorithm Runtime
  Distribution Predictions
Bayes DistNet -- A Robust Neural Network for Algorithm Runtime Distribution Predictions
Jake E. Tuero
M. Buro
OOD
18
0
0
14 Dec 2020
Confidence Estimation via Auxiliary Models
Confidence Estimation via Auxiliary Models
Charles Corbière
Nicolas Thome
A. Saporta
Tuan-Hung Vu
Matthieu Cord
P. Pérez
TPM
29
47
0
11 Dec 2020
Understanding Learned Reward Functions
Understanding Learned Reward Functions
Eric J. Michaud
Adam Gleave
Stuart J. Russell
XAI
OffRL
30
33
0
10 Dec 2020
The Hidden Uncertainty in a Neural Networks Activations
The Hidden Uncertainty in a Neural Networks Activations
Janis Postels
Hermann Blum
Yannick Strümpler
Cesar Cadena
Roland Siegwart
Luc Van Gool
Federico Tombari
UQCV
36
22
0
05 Dec 2020
AI Governance for Businesses
AI Governance for Businesses
Johannes Schneider
Rene Abraham
Christian Meske
Jan vom Brocke
AI4TS
26
67
0
20 Nov 2020
Bridging Physics-based and Data-driven modeling for Learning Dynamical
  Systems
Bridging Physics-based and Data-driven modeling for Learning Dynamical Systems
Rui Wang
Danielle C. Maddix
Christos Faloutsos
Bernie Wang
Rose Yu
OOD
AI4CE
27
51
0
20 Nov 2020
Inverse Constrained Reinforcement Learning
Inverse Constrained Reinforcement Learning
Usman Anwar
Shehryar Malik
Alireza Aghasi
Ali Ahmed
18
58
0
19 Nov 2020
Avoiding Tampering Incentives in Deep RL via Decoupled Approval
Avoiding Tampering Incentives in Deep RL via Decoupled Approval
J. Uesato
Ramana Kumar
Victoria Krakovna
Tom Everitt
Richard Ngo
Shane Legg
26
14
0
17 Nov 2020
REALab: An Embedded Perspective on Tampering
REALab: An Embedded Perspective on Tampering
Ramana Kumar
J. Uesato
Richard Ngo
Tom Everitt
Victoria Krakovna
Shane Legg
30
10
0
17 Nov 2020
Learning Dense Rewards for Contact-Rich Manipulation Tasks
Learning Dense Rewards for Contact-Rich Manipulation Tasks
Zheng Wu
Wenzhao Lian
Vaibhav Unhelkar
Masayoshi Tomizuka
S. Schaal
8
37
0
17 Nov 2020
Model-based Reinforcement Learning from Signal Temporal Logic
  Specifications
Model-based Reinforcement Learning from Signal Temporal Logic Specifications
Parv Kapoor
Anand Balakrishnan
Jyotirmoy V. Deshmukh
23
22
0
10 Nov 2020
Playing optical tweezers with deep reinforcement learning: in virtual,
  physical and augmented environments
Playing optical tweezers with deep reinforcement learning: in virtual, physical and augmented environments
M. Praeger
Yunhui Xie
J. Grant-Jacob
R. Eason
B. Mills
22
11
0
05 Nov 2020
Multiscale Score Matching for Out-of-Distribution Detection
Multiscale Score Matching for Out-of-Distribution Detection
Ahsan Mahmood
Junier Oliva
M. Styner
OODD
27
30
0
25 Oct 2020
PEP: Parameter Ensembling by Perturbation
PEP: Parameter Ensembling by Perturbation
Alireza Mehrtash
Purang Abolmaesumi
Polina Golland
Tina Kapur
Demian Wassermann
W. Wells
25
10
0
24 Oct 2020
Learning Loss for Test-Time Augmentation
Learning Loss for Test-Time Augmentation
Ildoo Kim
Younghoon Kim
Sungwoong Kim
OOD
26
91
0
22 Oct 2020
Deep Learning for Distinguishing Normal versus Abnormal Chest
  Radiographs and Generalization to Unseen Diseases
Deep Learning for Distinguishing Normal versus Abnormal Chest Radiographs and Generalization to Unseen Diseases
Zaid Nabulsi
Andrew Sellergren
Shahar Jamshy
Charles Lau
E. Santos
...
Daniel Tse
Neeral Beladia
Yun-Hui Liu
Po-Hsuan Cameron Chen
S. Shetty
30
37
0
22 Oct 2020
Failure Prediction by Confidence Estimation of Uncertainty-Aware
  Dirichlet Networks
Failure Prediction by Confidence Estimation of Uncertainty-Aware Dirichlet Networks
Theodoros Tsiligkaridis
UQCV
22
7
0
19 Oct 2020
A Survey of Machine Learning Techniques in Adversarial Image Forensics
A Survey of Machine Learning Techniques in Adversarial Image Forensics
Ehsan Nowroozi
Ali Dehghantanha
R. Parizi
K. Choo
AAML
25
72
0
19 Oct 2020
Scenic: A Language for Scenario Specification and Data Generation
Scenic: A Language for Scenario Specification and Data Generation
Daniel J. Fremont
Edward J. Kim
T. Dreossi
Shromona Ghosh
Xiangyu Yue
Alberto L. Sangiovanni-Vincentelli
S. Seshia
29
98
0
13 Oct 2020
Variable impedance control and learning -- A review
Variable impedance control and learning -- A review
Fares J. Abu-Dakka
Matteo Saveriano
AI4CE
39
148
0
13 Oct 2020
Reward Machines: Exploiting Reward Function Structure in Reinforcement
  Learning
Reward Machines: Exploiting Reward Function Structure in Reinforcement Learning
Rodrigo Toro Icarte
Toryn Q. Klassen
Richard Valenzano
Sheila A. McIlraith
OffRL
44
216
0
06 Oct 2020
Generative Model-Enhanced Human Motion Prediction
Generative Model-Enhanced Human Motion Prediction
Anthony Bourached
Ryan-Rhys Griffiths
Robert J. Gray
A. Jha
P. Nachev
34
15
0
05 Oct 2020
Why have a Unified Predictive Uncertainty? Disentangling it using Deep
  Split Ensembles
Why have a Unified Predictive Uncertainty? Disentangling it using Deep Split Ensembles
U. Sarawgi
W. Zulfikar
Rishab Khincha
Pattie Maes
PER
UQCV
BDL
UD
21
7
0
25 Sep 2020
Deep Learning & Software Engineering: State of Research and Future
  Directions
Deep Learning & Software Engineering: State of Research and Future Directions
P. Devanbu
Matthew B. Dwyer
Sebastian G. Elbaum
M. Lowry
Kevin Moran
Denys Poshyvanyk
Baishakhi Ray
Rishabh Singh
Xiangyu Zhang
11
22
0
17 Sep 2020
Avoiding Negative Side Effects due to Incomplete Knowledge of AI Systems
Avoiding Negative Side Effects due to Incomplete Knowledge of AI Systems
Sandhya Saisubramanian
S. Zilberstein
Ece Kamar
20
21
0
24 Aug 2020
SafePILCO: a software tool for safe and data-efficient policy synthesis
SafePILCO: a software tool for safe and data-efficient policy synthesis
Kyriakos Polymenakos
Nikitas Rontsis
Alessandro Abate
Stephen J. Roberts
20
6
0
07 Aug 2020
Weak Human Preference Supervision For Deep Reinforcement Learning
Weak Human Preference Supervision For Deep Reinforcement Learning
Zehong Cao
Kaichiu Wong
Chin-Teng Lin
16
5
0
25 Jul 2020
CSI: Novelty Detection via Contrastive Learning on Distributionally
  Shifted Instances
CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances
Jihoon Tack
Sangwoo Mo
Jongheon Jeong
Jinwoo Shin
OODD
11
588
0
16 Jul 2020
Good AI for the Present of Humanity Democratizing AI Governance
Good AI for the Present of Humanity Democratizing AI Governance
N. Corrêa
Nythamar Fernandes de Oliveira
32
5
0
08 Jul 2020
Decolonial AI: Decolonial Theory as Sociotechnical Foresight in
  Artificial Intelligence
Decolonial AI: Decolonial Theory as Sociotechnical Foresight in Artificial Intelligence
Shakir Mohamed
Marie-Therese Png
William S. Isaac
33
395
0
08 Jul 2020
Estimating Generalization under Distribution Shifts via Domain-Invariant
  Representations
Estimating Generalization under Distribution Shifts via Domain-Invariant Representations
Ching-Yao Chuang
Antonio Torralba
Stefanie Jegelka
OOD
6
60
0
06 Jul 2020
MDP Homomorphic Networks: Group Symmetries in Reinforcement Learning
MDP Homomorphic Networks: Group Symmetries in Reinforcement Learning
Elise van der Pol
Daniel E. Worrall
H. V. Hoof
F. Oliehoek
Max Welling
BDL
AI4CE
31
156
0
30 Jun 2020
Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via
  Higher-Order Influence Functions
Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions
Ahmed Alaa
M. Schaar
UD
UQCV
BDL
TDI
24
53
0
29 Jun 2020
AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph
  modularity
AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity
S. Udrescu
A. Tan
Jiahai Feng
Orisvaldo Neto
Tailin Wu
Max Tegmark
25
185
0
18 Jun 2020
Task-agnostic Out-of-Distribution Detection Using Kernel Density
  Estimation
Task-agnostic Out-of-Distribution Detection Using Kernel Density Estimation
Ertunc Erdil
K. Chaitanya
Neerav Karani
E. Konukoglu
OODD
27
7
0
18 Jun 2020
Preference-based Reinforcement Learning with Finite-Time Guarantees
Preference-based Reinforcement Learning with Finite-Time Guarantees
Yichong Xu
Ruosong Wang
Lin F. Yang
Aarti Singh
A. Dubrawski
33
53
0
16 Jun 2020
Depth Uncertainty in Neural Networks
Depth Uncertainty in Neural Networks
Javier Antorán
J. Allingham
José Miguel Hernández-Lobato
UQCV
OOD
BDL
43
100
0
15 Jun 2020
Detecting unusual input to neural networks
Detecting unusual input to neural networks
Jörg Martin
Clemens Elster
AAML
17
7
0
15 Jun 2020
MixMOOD: A systematic approach to class distribution mismatch in
  semi-supervised learning using deep dataset dissimilarity measures
MixMOOD: A systematic approach to class distribution mismatch in semi-supervised learning using deep dataset dissimilarity measures
Saul Calderon-Ramirez
Luis Oala
J. Torrents-Barrena
Shengxiang-Yang
Armaghan Moemeni
Wojciech Samek
Miguel A. Molina-Cabello
33
10
0
14 Jun 2020
Hindsight Logging for Model Training
Hindsight Logging for Model Training
Rolando Garcia
Eric Liu
Vikram Sreekanti
Bobby Yan
Anusha Dandamudi
Joseph E. Gonzalez
J. M. Hellerstein
Koushik Sen
VLM
27
10
0
12 Jun 2020
Reinforcement Learning Under Moral Uncertainty
Reinforcement Learning Under Moral Uncertainty
Adrien Ecoffet
Joel Lehman
17
32
0
08 Jun 2020
Previous
123...106789
Next