Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.06565
Cited By
Concrete Problems in AI Safety
21 June 2016
Dario Amodei
C. Olah
Jacob Steinhardt
Paul Christiano
John Schulman
Dandelion Mané
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Concrete Problems in AI Safety"
26 / 476 papers shown
Title
DropoutDAgger: A Bayesian Approach to Safe Imitation Learning
Kunal Menda
Katherine Driggs-Campbell
Mykel J. Kochenderfer
29
28
0
18 Sep 2017
Guidelines for Artificial Intelligence Containment
James Babcock
János Kramár
Roman V. Yampolskiy
20
30
0
24 Jul 2017
Trial without Error: Towards Safe Reinforcement Learning via Human Intervention
William Saunders
Girish Sastry
Andreas Stuhlmuller
Owain Evans
OffRL
24
229
0
17 Jul 2017
Efficient Probabilistic Performance Bounds for Inverse Reinforcement Learning
Daniel S. Brown
S. Niekum
BDL
OffRL
22
42
0
03 Jul 2017
An In-Depth Analysis of Visual Tracking with Siamese Neural Networks
R. Pflugfelder
19
14
0
03 Jul 2017
Deep reinforcement learning from human preferences
Paul Christiano
Jan Leike
Tom B. Brown
Miljan Martic
Shane Legg
Dario Amodei
13
3,118
0
12 Jun 2017
Reinforcement Learning with a Corrupted Reward Channel
Tom Everitt
Victoria Krakovna
Laurent Orseau
Marcus Hutter
Shane Legg
20
100
0
23 May 2017
Concrete Dropout
Y. Gal
Jiri Hron
Alex Kendall
BDL
UQCV
48
585
0
22 May 2017
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
65
2,699
0
19 May 2017
Repeated Inverse Reinforcement Learning
Kareem Amin
Nan Jiang
Satinder Singh
8
75
0
15 May 2017
Probabilistically Safe Policy Transfer
David Held
Zoe McCarthy
Michael Zhang
Fred Shentu
Pieter Abbeel
24
19
0
15 May 2017
Maximum Resilience of Artificial Neural Networks
Chih-Hong Cheng
Georg Nührenberg
Harald Ruess
AAML
27
281
0
28 Apr 2017
Blocking Transferability of Adversarial Examples in Black-Box Learning Systems
Hossein Hosseini
Yize Chen
Sreeram Kannan
Baosen Zhang
Radha Poovendran
AAML
30
106
0
13 Mar 2017
Dropout Inference in Bayesian Neural Networks with Alpha-divergences
Yingzhen Li
Y. Gal
UQCV
BDL
49
196
0
08 Mar 2017
Deep Reinforcement Learning: An Overview
Yuxi Li
OffRL
VLM
104
1,503
0
25 Jan 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,683
0
05 Dec 2016
Generalizing Skills with Semi-Supervised Reinforcement Learning
Chelsea Finn
Tianhe Yu
Justin Fu
Pieter Abbeel
Sergey Levine
OffRL
SSL
29
68
0
01 Dec 2016
On Human Intellect and Machine Failures: Troubleshooting Integrative Machine Learning Systems
Besmira Nushi
Ece Kamar
Eric Horvitz
Donald Kossmann
42
77
0
24 Nov 2016
Safety Verification of Deep Neural Networks
Xiaowei Huang
Marta Kwiatkowska
Sen Wang
Min Wu
AAML
183
932
0
21 Oct 2016
Learning Optimized Risk Scores
Berk Ustun
Cynthia Rudin
17
82
0
01 Oct 2016
Towards Verified Artificial Intelligence
S. Seshia
Dorsa Sadigh
S. Shankar Sastry
20
203
0
27 Jun 2016
Learning Representations for Counterfactual Inference
Fredrik D. Johansson
Uri Shalit
David Sontag
CML
OOD
BDL
232
720
0
12 May 2016
Fairness Constraints: Mechanisms for Fair Classification
Muhammad Bilal Zafar
Isabel Valera
Manuel Gomez Rodriguez
Krishna P. Gummadi
FaML
114
49
0
19 Jul 2015
Toward Idealized Decision Theory
N. Soares
Benja Fallenstein
21
37
0
07 Jul 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,156
0
06 Jun 2015
Safe Exploration in Markov Decision Processes
T. Moldovan
Pieter Abbeel
78
308
0
22 May 2012
Previous
1
2
3
...
10
8
9