ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.01540
  4. Cited By
OpenAI Gym

OpenAI Gym

5 June 2016
Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
    OffRL
    ODL
ArXivPDFHTML

Papers citing "OpenAI Gym"

50 / 1,654 papers shown
Title
Accelerating Natural Gradient with Higher-Order Invariance
Accelerating Natural Gradient with Higher-Order Invariance
Yang Song
Jiaming Song
Stefano Ermon
26
21
0
04 Mar 2018
General Video Game AI: a Multi-Track Framework for Evaluating Agents,
  Games and Content Generation Algorithms
General Video Game AI: a Multi-Track Framework for Evaluating Agents, Games and Content Generation Algorithms
Diego Perez-Liebana
Jialin Liu
Ahmed Khalifa
Raluca D. Gaina
Julian Togelius
Simon Lucas
8
174
0
28 Feb 2018
The Mirage of Action-Dependent Baselines in Reinforcement Learning
The Mirage of Action-Dependent Baselines in Reinforcement Learning
George Tucker
Surya Bhupatiraju
S. Gu
Richard Turner
Zoubin Ghahramani
Sergey Levine
OffRL
30
126
0
27 Feb 2018
Multi-Goal Reinforcement Learning: Challenging Robotics Environments and
  Request for Research
Multi-Goal Reinforcement Learning: Challenging Robotics Environments and Request for Research
Matthias Plappert
Marcin Andrychowicz
Alex Ray
Bob McGrew
Bowen Baker
...
Joshua Tobin
Maciek Chociej
Peter Welinder
Vikash Kumar
Wojciech Zaremba
33
557
0
26 Feb 2018
Back to Basics: Benchmarking Canonical Evolution Strategies for Playing
  Atari
Back to Basics: Benchmarking Canonical Evolution Strategies for Playing Atari
P. Chrabaszcz
I. Loshchilov
Frank Hutter
32
99
0
24 Feb 2018
Verifying Controllers Against Adversarial Examples with Bayesian
  Optimization
Verifying Controllers Against Adversarial Examples with Bayesian Optimization
Shromona Ghosh
Felix Berkenkamp
G. Ranade
S. Qadeer
Ashish Kapoor
AAML
33
45
0
23 Feb 2018
Structured Control Nets for Deep Reinforcement Learning
Structured Control Nets for Deep Reinforcement Learning
Mario Srouji
Jian Zhang
Ruslan Salakhutdinov
33
43
0
22 Feb 2018
Clipped Action Policy Gradient
Clipped Action Policy Gradient
Yasuhiro Fujita
S. Maeda
OffRL
34
37
0
21 Feb 2018
Continual Reinforcement Learning with Complex Synapses
Continual Reinforcement Learning with Complex Synapses
Christos Kaplanis
Murray Shanahan
Claudia Clopath
KELM
26
87
0
20 Feb 2018
State Representation Learning for Control: An Overview
State Representation Learning for Control: An Overview
Timothée Lesort
Natalia Díaz Rodríguez
Jean-François Goudou
David Filliat
OffRL
45
319
0
12 Feb 2018
Learning to Evade Static PE Machine Learning Malware Models via
  Reinforcement Learning
Learning to Evade Static PE Machine Learning Malware Models via Reinforcement Learning
Hyrum S. Anderson
Anant Kharkar
Bobby Filar
David Evans
P. Roth
AAML
35
207
0
26 Jan 2018
Reinforcement Learning based Recommender System using Biclustering
  Technique
Reinforcement Learning based Recommender System using Biclustering Technique
Sungwoon Choi
Heonseok Ha
Uiwon Hwang
Chanju Kim
Jung-Woo Ha
Sungroh Yoon
OffRL
19
70
0
17 Jan 2018
Distributed Deep Reinforcement Learning: Learn how to play Atari games
  in 21 minutes
Distributed Deep Reinforcement Learning: Learn how to play Atari games in 21 minutes
Igor Adamski
R. Adamski
T. Grel
Adam Jedrych
Kamil Kaczmarek
Henryk Michalewski
OffRL
41
37
0
09 Jan 2018
Sample-Efficient Reinforcement Learning through Transfer and
  Architectural Priors
Sample-Efficient Reinforcement Learning through Transfer and Architectural Priors
Benjamin Spector
Serge J. Belongie
OffRL
14
15
0
07 Jan 2018
DeepMind Control Suite
DeepMind Control Suite
Yuval Tassa
Yotam Doron
Alistair Muldal
Tom Erez
Yazhe Li
...
A. Abdolmaleki
J. Merel
Andrew Lefrancq
Timothy Lillicrap
Martin Riedmiller
ELM
LM&Ro
BDL
56
1,105
0
02 Jan 2018
ES Is More Than Just a Traditional Finite-Difference Approximator
ES Is More Than Just a Traditional Finite-Difference Approximator
Joel Lehman
Jay Chen
Jeff Clune
Kenneth O. Stanley
25
89
0
18 Dec 2017
Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative
  for Training Deep Neural Networks for Reinforcement Learning
Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning
F. Such
Vashisht Madhavan
Edoardo Conti
Joel Lehman
Kenneth O. Stanley
Jeff Clune
47
686
0
18 Dec 2017
Deep Primal-Dual Reinforcement Learning: Accelerating Actor-Critic using
  Bellman Duality
Deep Primal-Dual Reinforcement Learning: Accelerating Actor-Critic using Bellman Duality
W. Cho
Mengdi Wang
OffRL
33
14
0
07 Dec 2017
MAgent: A Many-Agent Reinforcement Learning Platform for Artificial
  Collective Intelligence
MAgent: A Many-Agent Reinforcement Learning Platform for Artificial Collective Intelligence
Lianmin Zheng
Jiacheng Yang
Han Cai
Weinan Zhang
Jun Wang
Yong Yu
21
205
0
02 Dec 2017
Time Limits in Reinforcement Learning
Time Limits in Reinforcement Learning
Fabio Pardo
Arash Tavakoli
Vitaly Levdik
Petar Kormushev
CLL
44
158
0
01 Dec 2017
Variational Deep Q Network
Variational Deep Q Network
Yunhao Tang
A. Kucukelbir
BDL
38
10
0
30 Nov 2017
Comparing Deep Reinforcement Learning and Evolutionary Methods in
  Continuous Control
Comparing Deep Reinforcement Learning and Evolutionary Methods in Continuous Control
Shangtong Zhang
Osmar R. Zaiane
33
10
0
30 Nov 2017
Divide-and-Conquer Reinforcement Learning
Divide-and-Conquer Reinforcement Learning
Dibya Ghosh
Avi Singh
Aravind Rajeswaran
Vikash Kumar
Sergey Levine
OffRL
45
125
0
27 Nov 2017
Action Branching Architectures for Deep Reinforcement Learning
Action Branching Architectures for Deep Reinforcement Learning
Arash Tavakoli
Fabio Pardo
Petar Kormushev
22
260
0
24 Nov 2017
Backpropagation through the Void: Optimizing control variates for
  black-box gradient estimation
Backpropagation through the Void: Optimizing control variates for black-box gradient estimation
Will Grathwohl
Dami Choi
Yuhuai Wu
Geoffrey Roeder
David Duvenaud
56
300
0
31 Oct 2017
Diff-DAC: Distributed Actor-Critic for Average Multitask Deep
  Reinforcement Learning
Diff-DAC: Distributed Actor-Critic for Average Multitask Deep Reinforcement Learning
Sergio Valcarcel Macua
Aleksi Tukiainen
D. Hernández
David Baldazo
Enrique Munoz de Cote
S. Zazo
32
29
0
28 Oct 2017
Fast Model Identification via Physics Engines for Data-Efficient Policy
  Search
Fast Model Identification via Physics Engines for Data-Efficient Policy Search
Shaojun Zhu
A. Kimmel
Kostas E. Bekris
Abdeslam Boularias
31
14
0
24 Oct 2017
Deep TAMER: Interactive Agent Shaping in High-Dimensional State Spaces
Deep TAMER: Interactive Agent Shaping in High-Dimensional State Spaces
Garrett A. Warnell
Nicholas R. Waytowich
Vernon J. Lawhern
Peter Stone
13
267
0
28 Sep 2017
DropoutDAgger: A Bayesian Approach to Safe Imitation Learning
DropoutDAgger: A Bayesian Approach to Safe Imitation Learning
Kunal Menda
Katherine Driggs-Campbell
Mykel J. Kochenderfer
32
28
0
18 Sep 2017
Revisiting the Arcade Learning Environment: Evaluation Protocols and
  Open Problems for General Agents
Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents
Marlos C. Machado
Marc G. Bellemare
Erik Talvitie
J. Veness
Matthew J. Hausknecht
Michael Bowling
37
544
0
18 Sep 2017
One-Shot Visual Imitation Learning via Meta-Learning
One-Shot Visual Imitation Learning via Meta-Learning
Chelsea Finn
Tianhe Yu
Tianhao Zhang
Pieter Abbeel
Sergey Levine
SSL
30
555
0
14 Sep 2017
Mean Actor Critic
Mean Actor Critic
Cameron Allen
Kavosh Asadi
Melrose Roderick
Abdel-rahman Mohamed
George Konidaris
Michael Littman
25
44
0
01 Sep 2017
A Brief Survey of Deep Reinforcement Learning
A Brief Survey of Deep Reinforcement Learning
Kai Arulkumaran
M. Deisenroth
Miles Brundage
Anil Anthony Bharath
OffRL
65
2,780
0
19 Aug 2017
Scalable trust-region method for deep reinforcement learning using
  Kronecker-factored approximation
Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation
Yuhuai Wu
Elman Mansimov
Shun Liao
Roger C. Grosse
Jimmy Ba
OffRL
22
622
0
17 Aug 2017
OpenML Benchmarking Suites
OpenML Benchmarking Suites
B. Bischl
Giuseppe Casalicchio
Matthias Feurer
Pieter Gijsbers
Frank Hutter
Michel Lang
R. G. Mantovani
Jan N. van Rijn
Joaquin Vanschoren
VLM
ELM
41
152
0
11 Aug 2017
An Information-Theoretic Optimality Principle for Deep Reinforcement
  Learning
An Information-Theoretic Optimality Principle for Deep Reinforcement Learning
Felix Leibfried
Jordi Grau-Moya
Haitham Bou-Ammar
38
24
0
06 Aug 2017
Mutual Alignment Transfer Learning
Mutual Alignment Transfer Learning
Markus Wulfmeier
Ingmar Posner
Pieter Abbeel
16
60
0
25 Jul 2017
RAIL: Risk-Averse Imitation Learning
RAIL: Risk-Averse Imitation Learning
Anirban Santara
A. Naik
Balaraman Ravindran
Dipankar Das
Dheevatsa Mudigere
Sasikanth Avancha
Bharat Kaul
30
18
0
20 Jul 2017
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
84
18,385
0
20 Jul 2017
ELF: An Extensive, Lightweight and Flexible Research Platform for
  Real-time Strategy Games
ELF: An Extensive, Lightweight and Flexible Research Platform for Real-time Strategy Games
Yuandong Tian
Qucheng Gong
Wenling Shang
Yuxin Wu
C. L. Zitnick
OffRL
27
126
0
04 Jul 2017
Dex: Incremental Learning for Complex Environments in Deep Reinforcement
  Learning
Dex: Incremental Learning for Complex Environments in Deep Reinforcement Learning
Nick Erickson
Qi Zhao
CLL
OffRL
222
2
0
19 Jun 2017
Reinforcement Learning under Model Mismatch
Reinforcement Learning under Model Mismatch
Aurko Roy
Huan Xu
Sebastian Pokutta
OOD
24
80
0
15 Jun 2017
Symmetry Learning for Function Approximation in Reinforcement Learning
Symmetry Learning for Function Approximation in Reinforcement Learning
Anuj Mahajan
Theja Tulabandhula
22
31
0
09 Jun 2017
Fine-grained acceleration control for autonomous intersection management
  using deep reinforcement learning
Fine-grained acceleration control for autonomous intersection management using deep reinforcement learning
H. Mirzaei
T. Givargis
19
8
0
30 May 2017
Feature Control as Intrinsic Motivation for Hierarchical Reinforcement
  Learning
Feature Control as Intrinsic Motivation for Hierarchical Reinforcement Learning
Nat Dilokthanakul
Christos Kaplanis
Nick Pawlowski
Murray Shanahan
24
91
0
18 May 2017
Curiosity-driven Exploration by Self-supervised Prediction
Curiosity-driven Exploration by Self-supervised Prediction
Deepak Pathak
Pulkit Agrawal
Alexei A. Efros
Trevor Darrell
LRM
SSL
69
2,401
0
15 May 2017
Beating Atari with Natural Language Guided Reinforcement Learning
Beating Atari with Natural Language Guided Reinforcement Learning
Russell Kaplan
Chris Sauer
A. Sosa
LM&Ro
19
69
0
18 Apr 2017
Combining Model-Based and Model-Free Updates for Trajectory-Centric
  Reinforcement Learning
Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning
Yevgen Chebotar
Karol Hausman
Marvin Zhang
Gaurav Sukhatme
S. Schaal
Sergey Levine
37
159
0
08 Mar 2017
Deep Robust Kalman Filter
Deep Robust Kalman Filter
Shirli Di-Castro Shashua
Shie Mannor
BDL
30
28
0
07 Mar 2017
Reinforcement Learning for Pivoting Task
Reinforcement Learning for Pivoting Task
Rika Antonova
S. Cruciani
Christian Smith
Danica Kragic
10
68
0
01 Mar 2017
Previous
123...323334
Next