ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.00709
  4. Cited By
f-GAN: Training Generative Neural Samplers using Variational Divergence
  Minimization

f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization

2 June 2016
Sebastian Nowozin
Botond Cseke
Ryota Tomioka
    GAN
ArXiv (abs)PDFHTML

Papers citing "f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization"

50 / 904 papers shown
Title
Learning Graph Representation by Aggregating Subgraphs via Mutual
  Information Maximization
Learning Graph Representation by Aggregating Subgraphs via Mutual Information Maximization
Chenguang Wang
Ziwen Liu
SSL
125
18
0
24 Mar 2021
Generative Minimization Networks: Training GANs Without Competition
Generative Minimization Networks: Training GANs Without Competition
Paulina Grnarova
Yannic Kilcher
Kfir Y. Levy
Aurelien Lucchi
Thomas Hofmann
GAN
37
6
0
23 Mar 2021
Unsupervised Two-Stage Anomaly Detection
Unsupervised Two-Stage Anomaly Detection
Yunfei Liu
Chaoqun Zhuang
Feng Lu
109
30
0
22 Mar 2021
Self-supervised Representation Learning with Relative Predictive Coding
Self-supervised Representation Learning with Relative Predictive Coding
Yao-Hung Hubert Tsai
Martin Q. Ma
Muqiao Yang
Han Zhao
Louis-Philippe Morency
Ruslan Salakhutdinov
SSLAI4TS
101
38
0
21 Mar 2021
Exploring The Effect of High-frequency Components in GANs Training
Exploring The Effect of High-frequency Components in GANs Training
Ziqiang Li
Pengfei Xia
Xue Rui
Bin Li
GAN
91
20
0
20 Mar 2021
A Hybrid Gradient Method to Designing Bayesian Experiments for Implicit
  Models
A Hybrid Gradient Method to Designing Bayesian Experiments for Implicit Models
Jiaxin Zhang
Sirui Bi
Guannan Zhang
25
0
0
14 Mar 2021
A Scalable Gradient-Free Method for Bayesian Experimental Design with
  Implicit Models
A Scalable Gradient-Free Method for Bayesian Experimental Design with Implicit Models
Jiaxin Zhang
Sirui Bi
Guannan Zhang
65
9
0
14 Mar 2021
Mean Field Game GAN
Mean Field Game GAN
Shaojun Ma
Haomin Zhou
H. Zha
GANAI4CE
69
0
0
14 Mar 2021
Non-Asymptotic Performance Guarantees for Neural Estimation of
  $\mathsf{f}$-Divergences
Non-Asymptotic Performance Guarantees for Neural Estimation of f\mathsf{f}f-Divergences
Sreejith Sreekumar
Zhengxin Zhang
Ziv Goldfeld
FedML
72
18
0
11 Mar 2021
Cross-modal Image Retrieval with Deep Mutual Information Maximization
Cross-modal Image Retrieval with Deep Mutual Information Maximization
Chunbin Gu
Jiajun Bu
Xixi Zhou
Chengwei Yao
Dongfang Ma
Zhi Yu
Xifeng Yan
59
16
0
10 Mar 2021
VideoMoCo: Contrastive Video Representation Learning with Temporally
  Adversarial Examples
VideoMoCo: Contrastive Video Representation Learning with Temporally Adversarial Examples
Tian Pan
Yibing Song
Tianyu Yang
Wenhao Jiang
Wei Liu
99
226
0
10 Mar 2021
Continual Density Ratio Estimation in an Online Setting
Continual Density Ratio Estimation in an Online Setting
Yu Chen
Song Liu
Tom Diethe
Peter A. Flach
36
1
0
09 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLMTPM
193
511
0
08 Mar 2021
Boosting Semi-supervised Image Segmentation with Global and Local Mutual
  Information Regularization
Boosting Semi-supervised Image Segmentation with Global and Local Mutual Information Regularization
Jizong Peng
M. Pedersoli
Christian Desrosiers
SSL
82
21
0
08 Mar 2021
Posterior Meta-Replay for Continual Learning
Posterior Meta-Replay for Continual Learning
Christian Henning
Maria R. Cervera
Francesco DÁngelo
J. Oswald
Regina Traber
Benjamin Ehret
Seijin Kobayashi
Benjamin Grewe
João Sacramento
CLLBDL
117
60
0
01 Mar 2021
Training Generative Adversarial Networks in One Stage
Training Generative Adversarial Networks in One Stage
Chengchao Shen
Youtan Yin
Xinchao Wang
Xubin Li
Mingli Song
Xiuming Zhang
GAN
111
13
0
28 Feb 2021
Adversarial Information Bottleneck
Adversarial Information Bottleneck
Penglong Zhai
Shihua Zhang
AAML
57
8
0
28 Feb 2021
Off-Policy Imitation Learning from Observations
Off-Policy Imitation Learning from Observations
Zhuangdi Zhu
Kaixiang Lin
Bo Dai
Jiayu Zhou
OffRL
66
86
0
25 Feb 2021
RCoNet: Deformable Mutual Information Maximization and High-order
  Uncertainty-aware Learning for Robust COVID-19 Detection
RCoNet: Deformable Mutual Information Maximization and High-order Uncertainty-aware Learning for Robust COVID-19 Detection
Shunjie Dong
Qianqian Yang
Yu Fu
Mei Tian
Cheng Zhuo
OOD
53
42
0
22 Feb 2021
Self-Supervised Learning of Graph Neural Networks: A Unified Review
Self-Supervised Learning of Graph Neural Networks: A Unified Review
Yaochen Xie
Zhao Xu
Jingtun Zhang
Zhengyang Wang
Shuiwang Ji
SSL
163
339
0
22 Feb 2021
Generative Speech Coding with Predictive Variance Regularization
Generative Speech Coding with Predictive Variance Regularization
W. Kleijn
Andrew Storus
Michael Chinen
Tom Denton
Felicia S. C. Lim
Alejandro Luebs
Jan Skoglund
Hengchin Yeh
68
68
0
18 Feb 2021
BORE: Bayesian Optimization by Density-Ratio Estimation
BORE: Bayesian Optimization by Density-Ratio Estimation
Louis C. Tiao
Aaron Klein
Matthias Seeger
Edwin V. Bonilla
Cédric Archambeau
F. Ramos
91
29
0
17 Feb 2021
Neural Posterior Regularization for Likelihood-Free Inference
Neural Posterior Regularization for Likelihood-Free Inference
Dongjun Kim
Kyungwoo Song
Seung-Jae Shin
Wanmo Kang
Il-Chul Moon
Weonyoung Joo
67
1
0
15 Feb 2021
On the Properties of Kullback-Leibler Divergence Between Multivariate
  Gaussian Distributions
On the Properties of Kullback-Leibler Divergence Between Multivariate Gaussian Distributions
Yufeng Zhang
Wanwei Liu
Zhenbang Chen
Ji Wang
KenLi Li
128
26
0
10 Feb 2021
Negative Data Augmentation
Negative Data Augmentation
Abhishek Sinha
Kumar Ayush
Jiaming Song
Burak Uzkent
Hongxia Jin
Stefano Ermon
86
76
0
09 Feb 2021
HGAN: Hybrid Generative Adversarial Network
HGAN: Hybrid Generative Adversarial Network
Seyed Mehdi Iranmanesh
Nasser M. Nasrabadi
GAN
40
4
0
07 Feb 2021
Rates of convergence for density estimation with generative adversarial
  networks
Rates of convergence for density estimation with generative adversarial networks
Nikita Puchkin
S. Samsonov
Denis Belomestny
Eric Moulines
A. Naumov
123
11
0
30 Jan 2021
On the capacity of deep generative networks for approximating
  distributions
On the capacity of deep generative networks for approximating distributions
Yunfei Yang
Zhen Li
Yang Wang
109
30
0
29 Jan 2021
Prototypical Pseudo Label Denoising and Target Structure Learning for
  Domain Adaptive Semantic Segmentation
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation
Pan Zhang
Bo Zhang
Ting Zhang
Dong Chen
Yong Wang
Fang Wen
197
499
0
26 Jan 2021
SUGAR: Subgraph Neural Network with Reinforcement Pooling and
  Self-Supervised Mutual Information Mechanism
SUGAR: Subgraph Neural Network with Reinforcement Pooling and Self-Supervised Mutual Information Mechanism
Qingyun Sun
Jianxin Li
Hao Peng
Hongzhi Zhang
Yuanxing Ning
Phillip S. Yu
Lifang He
71
168
0
20 Jan 2021
Robust W-GAN-Based Estimation Under Wasserstein Contamination
Robust W-GAN-Based Estimation Under Wasserstein Contamination
Zheng Liu
Po-Ling Loh
43
7
0
20 Jan 2021
DuelGAN: A Duel Between Two Discriminators Stabilizes the GAN Training
DuelGAN: A Duel Between Two Discriminators Stabilizes the GAN Training
Jiaheng Wei
Minghao Liu
Jiahao Luo
Andrew Zhu
James Davis
Yang Liu
GAN
162
12
0
19 Jan 2021
Disentangled Recurrent Wasserstein Autoencoder
Disentangled Recurrent Wasserstein Autoencoder
Jun Han
Martin Renqiang Min
Ligong Han
Erran L. Li
Xuan Zhang
CoGeSyDaDRL
83
33
0
19 Jan 2021
DICE: Diversity in Deep Ensembles via Conditional Redundancy Adversarial
  Estimation
DICE: Diversity in Deep Ensembles via Conditional Redundancy Adversarial Estimation
Alexandre Ramé
Matthieu Cord
FedML
87
52
0
14 Jan 2021
Adversarial Machine Learning in Text Analysis and Generation
Adversarial Machine Learning in Text Analysis and Generation
I. Alsmadi
AAML
114
5
0
14 Jan 2021
Solving Min-Max Optimization with Hidden Structure via Gradient Descent
  Ascent
Solving Min-Max Optimization with Hidden Structure via Gradient Descent Ascent
Lampros Flokas
Emmanouil-Vasileios Vlatakis-Gkaragkounis
Georgios Piliouras
MLT
122
14
0
13 Jan 2021
How to Train Your Energy-Based Models
How to Train Your Energy-Based Models
Yang Song
Diederik P. Kingma
DiffM
106
265
0
09 Jan 2021
Privacy-Constrained Policies via Mutual Information Regularized Policy
  Gradients
Privacy-Constrained Policies via Mutual Information Regularized Policy Gradients
Chris Cundy
Rishi Desai
Stefano Ermon
OffRL
127
4
0
30 Dec 2020
Learning Robust Representation for Clustering through Locality
  Preserving Variational Discriminative Network
Learning Robust Representation for Clustering through Locality Preserving Variational Discriminative Network
Ruixuan Luo
Wei Li
Zhiyuan Zhang
Ruihan Bao
Keiko Harimoto
Xu Sun
OODDRL
39
1
0
25 Dec 2020
Leave Zero Out: Towards a No-Cross-Validation Approach for Model
  Selection
Leave Zero Out: Towards a No-Cross-Validation Approach for Model Selection
Weikai Li
Chuanxing Geng
Songcan Chen
62
14
0
24 Dec 2020
Variational Transport: A Convergent Particle-BasedAlgorithm for
  Distributional Optimization
Variational Transport: A Convergent Particle-BasedAlgorithm for Distributional Optimization
Zhuoran Yang
Yufeng Zhang
Yongxin Chen
Zhaoran Wang
OT
91
5
0
21 Dec 2020
Artificial Dummies for Urban Dataset Augmentation
Artificial Dummies for Urban Dataset Augmentation
Antonín Vobecký
David Hurych
Michal Uřičář
P. Pérez
Josef Sivic
3DH
43
15
0
15 Dec 2020
A case for new neural network smoothness constraints
A case for new neural network smoothness constraints
Mihaela Rosca
T. Weber
Arthur Gretton
S. Mohamed
AAML
145
50
0
14 Dec 2020
DEAAN: Disentangled Embedding and Adversarial Adaptation Network for
  Robust Speaker Representation Learning
DEAAN: Disentangled Embedding and Adversarial Adaptation Network for Robust Speaker Representation Learning
Mufan Sang
Wei Xia
John H. L. Hansen
OODDRL
94
23
0
12 Dec 2020
Generative Learning With Euler Particle Transport
Generative Learning With Euler Particle Transport
Yuan Gao
Jian Huang
Yuling Jiao
Jin Liu
Xiliang Lu
J. Yang
OT
67
2
0
11 Dec 2020
Slimmable Generative Adversarial Networks
Slimmable Generative Adversarial Networks
Liang Hou
Zehuan Yuan
Lei Huang
Huawei Shen
Xueqi Cheng
Changhu Wang
GANAI4CE
65
40
0
10 Dec 2020
Bipartite Graph Embedding via Mutual Information Maximization
Bipartite Graph Embedding via Mutual Information Maximization
Jiangxia Cao
Xixun Lin
Shu Guo
Luchen Liu
Tingwen Liu
Bin Wang
135
113
0
10 Dec 2020
Offline Meta-level Model-based Reinforcement Learning Approach for
  Cold-Start Recommendation
Offline Meta-level Model-based Reinforcement Learning Approach for Cold-Start Recommendation
Yanan Wang
Yong Ge
Li Li
Rui Chen
Tong Xu
OffRL
72
7
0
04 Dec 2020
Mutual Information Maximization on Disentangled Representations for
  Differential Morph Detection
Mutual Information Maximization on Disentangled Representations for Differential Morph Detection
Sobhan Soleymani
Ali Dabouei
Fariborz Taherkhani
J. Dawson
Nasser M. Nasrabadi
75
27
0
02 Dec 2020
Generating private data with user customization
Generating private data with user customization
Xiao Chen
Thomas Navidi
Ram Rajagopal
67
2
0
02 Dec 2020
Previous
123...789...171819
Next