ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.05084
27
9

TripletGAN: Training Generative Model with Triplet Loss

14 November 2017
Gongze Cao
Yezhou Yang
Jie Lei
Cheng Jin
Yang Liu
Xiuming Zhang
    GAN
ArXivPDFHTML
Abstract

As an effective way of metric learning, triplet loss has been widely used in many deep learning tasks, including face recognition and person-ReID, leading to many states of the arts. The main innovation of triplet loss is using feature map to replace softmax in the classification task. Inspired by this concept, we propose here a new adversarial modeling method by substituting the classification loss of discriminator with triplet loss. Theoretical proof based on IPM (Integral probability metric) demonstrates that such setting will help the generator converge to the given distribution theoretically under some conditions. Moreover, since triplet loss requires the generator to maximize distance within a class, we justify tripletGAN is also helpful to prevent mode collapse through both theory and experiment.

View on arXiv
Comments on this paper