ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.03850
13
333

Adversarial Feature Matching for Text Generation

12 June 2017
Yizhe Zhang
Zhe Gan
Kai Fan
Zhi Chen
Ricardo Henao
Dinghan Shen
Lawrence Carin
    GAN
ArXivPDFHTML
Abstract

The Generative Adversarial Network (GAN) has achieved great success in generating realistic (real-valued) synthetic data. However, convergence issues and difficulties dealing with discrete data hinder the applicability of GAN to text. We propose a framework for generating realistic text via adversarial training. We employ a long short-term memory network as generator, and a convolutional network as discriminator. Instead of using the standard objective of GAN, we propose matching the high-dimensional latent feature distributions of real and synthetic sentences, via a kernelized discrepancy metric. This eases adversarial training by alleviating the mode-collapsing problem. Our experiments show superior performance in quantitative evaluation, and demonstrate that our model can generate realistic-looking sentences.

View on arXiv
Comments on this paper