ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.07147
  4. Cited By
Riemannian SVRG: Fast Stochastic Optimization on Riemannian Manifolds

Riemannian SVRG: Fast Stochastic Optimization on Riemannian Manifolds

23 May 2016
Hongyi Zhang
Sashank J. Reddi
S. Sra
ArXivPDFHTML

Papers citing "Riemannian SVRG: Fast Stochastic Optimization on Riemannian Manifolds"

50 / 118 papers shown
Title
Efficient Optimization with Orthogonality Constraint: a Randomized Riemannian Submanifold Method
Efficient Optimization with Orthogonality Constraint: a Randomized Riemannian Submanifold Method
Andi Han
Pierre-Louis Poirion
Akiko Takeda
2
0
0
18 May 2025
SPD Learning for Covariance-Based Neuroimaging Analysis: Perspectives, Methods, and Challenges
SPD Learning for Covariance-Based Neuroimaging Analysis: Perspectives, Methods, and Challenges
Ce Ju
Reinmar J. Kobler
Antoine Collas
M. Kawanabe
Cuntai Guan
Bertrand Thirion
43
0
0
26 Apr 2025
Position: Beyond Euclidean -- Foundation Models Should Embrace Non-Euclidean Geometries
Position: Beyond Euclidean -- Foundation Models Should Embrace Non-Euclidean Geometries
Neil He
Jiahong Liu
Buze Zhang
N. Bui
Ali Maatouk
Menglin Yang
Irwin King
Melanie Weber
Rex Ying
29
0
0
11 Apr 2025
Rethinking RoPE: A Mathematical Blueprint for N-dimensional Positional Encoding
Rethinking RoPE: A Mathematical Blueprint for N-dimensional Positional Encoding
Haiping Liu
Hongpeng Zhou
AI4CE
31
0
0
07 Apr 2025
$k$-SVD with Gradient Descent
kkk-SVD with Gradient Descent
Emily Gan
Yassir Jedra
Devavrat Shah
66
0
0
01 Feb 2025
Structured Regularization for Constrained Optimization on the SPD
  Manifold
Structured Regularization for Constrained Optimization on the SPD Manifold
Andrew Cheng
Melanie Weber
11
1
0
12 Oct 2024
Riemannian Federated Learning via Averaging Gradient Stream
Riemannian Federated Learning via Averaging Gradient Stream
Zhenwei Huang
Wen Huang
Pratik Jawanpuria
Bamdev Mishra
FedML
35
1
0
11 Sep 2024
Disciplined Geodesically Convex Programming
Disciplined Geodesically Convex Programming
Andrew Cheng
Vaibhav Dixit
Melanie Weber
18
1
0
07 Jul 2024
Learning-Rate-Free Stochastic Optimization over Riemannian Manifolds
Learning-Rate-Free Stochastic Optimization over Riemannian Manifolds
Daniel Dodd
Louis Sharrock
Christopher Nemeth
41
0
0
04 Jun 2024
Riemannian coordinate descent algorithms on matrix manifolds
Riemannian coordinate descent algorithms on matrix manifolds
Andi Han
Pratik Jawanpuria
Bamdev Mishra
48
5
0
04 Jun 2024
Riemannian Optimization for Active Mapping with Robot Teams
Riemannian Optimization for Active Mapping with Robot Teams
Arash Asgharivaskasi
Fritz Girke
Nikolay Atanasov
34
3
0
28 Apr 2024
Federated Learning on Riemannian Manifolds with Differential Privacy
Federated Learning on Riemannian Manifolds with Differential Privacy
Zhenwei Huang
Wen Huang
Pratik Jawanpuria
Bamdev Mishra
FedML
39
6
0
15 Apr 2024
FireANTs: Adaptive Riemannian Optimization for Multi-Scale Diffeomorphic Matching
FireANTs: Adaptive Riemannian Optimization for Multi-Scale Diffeomorphic Matching
Rohit Jena
Pratik Chaudhari
James C. Gee
52
2
0
01 Apr 2024
Streamlining in the Riemannian Realm: Efficient Riemannian Optimization
  with Loopless Variance Reduction
Streamlining in the Riemannian Realm: Efficient Riemannian Optimization with Loopless Variance Reduction
Yury Demidovich
Grigory Malinovsky
Peter Richtárik
56
2
0
11 Mar 2024
A Framework for Bilevel Optimization on Riemannian Manifolds
A Framework for Bilevel Optimization on Riemannian Manifolds
Andi Han
Bamdev Mishra
Pratik Jawanpuria
Akiko Takeda
21
4
0
06 Feb 2024
Stochastic Modified Flows for Riemannian Stochastic Gradient Descent
Stochastic Modified Flows for Riemannian Stochastic Gradient Descent
Benjamin Gess
Sebastian Kassing
Nimit Rana
40
0
0
02 Feb 2024
Continuous-time Riemannian SGD and SVRG Flows on Wasserstein
  Probabilistic Space
Continuous-time Riemannian SGD and SVRG Flows on Wasserstein Probabilistic Space
Mingyang Yi
Bohan Wang
32
0
0
24 Jan 2024
The Fisher-Rao geometry of CES distributions
The Fisher-Rao geometry of CES distributions
Florent Bouchard
A. Breloy
Antoine Collas
Alexandre Renaux
G. Ginolhac
18
5
0
02 Oct 2023
RSAM: Learning on manifolds with Riemannian Sharpness-aware Minimization
RSAM: Learning on manifolds with Riemannian Sharpness-aware Minimization
Kenneth Allen
Hoang-Phi Nguyen
Tung Pham
Ming-Jun Lai
Mehrtash Harandi
Dinh Q. Phung
Trung Le
AAML
40
3
0
29 Sep 2023
Zeroth-order Riemannian Averaging Stochastic Approximation Algorithms
Zeroth-order Riemannian Averaging Stochastic Approximation Algorithms
Jiaxiang Li
Krishnakumar Balasubramanian
Shiqian Ma
19
2
0
25 Sep 2023
Curvature-Independent Last-Iterate Convergence for Games on Riemannian
  Manifolds
Curvature-Independent Last-Iterate Convergence for Games on Riemannian Manifolds
Yong Cai
Michael I. Jordan
Tianyi Lin
Argyris Oikonomou
Emmanouil-Vasileios Vlatakis-Gkaragkounis
30
4
0
29 Jun 2023
Accelerated Methods for Riemannian Min-Max Optimization Ensuring Bounded
  Geometric Penalties
Accelerated Methods for Riemannian Min-Max Optimization Ensuring Bounded Geometric Penalties
David Martínez-Rubio
Christophe Roux
Christopher Criscitiello
Sebastian Pokutta
22
6
0
25 May 2023
Low-complexity subspace-descent over symmetric positive definite
  manifold
Low-complexity subspace-descent over symmetric positive definite manifold
Yogesh Darmwal
K. Rajawat
44
3
0
03 May 2023
Infeasible Deterministic, Stochastic, and Variance-Reduction Algorithms
  for Optimization under Orthogonality Constraints
Infeasible Deterministic, Stochastic, and Variance-Reduction Algorithms for Optimization under Orthogonality Constraints
Pierre Ablin
Simon Vary
Bin Gao
P.-A. Absil
54
7
0
29 Mar 2023
Convergence of variational Monte Carlo simulation and scale-invariant
  pre-training
Convergence of variational Monte Carlo simulation and scale-invariant pre-training
Nilin Abrahamsen
Zhiyan Ding
Gil Goldshlager
Lin Lin
DRL
35
2
0
21 Mar 2023
Particle-based Online Bayesian Sampling
Particle-based Online Bayesian Sampling
Yifan Yang
Chang-rui Liu
Zhengze Zhang
BDL
19
7
0
28 Feb 2023
Faster Riemannian Newton-type Optimization by Subsampling and Cubic
  Regularization
Faster Riemannian Newton-type Optimization by Subsampling and Cubic Regularization
Yian Deng
Tingting Mu
21
1
0
22 Feb 2023
Constrained Empirical Risk Minimization: Theory and Practice
Constrained Empirical Risk Minimization: Theory and Practice
Eric Marcus
Ray Sheombarsing
J. Sonke
Jonas Teuwen
15
1
0
09 Feb 2023
Decentralized Riemannian Algorithm for Nonconvex Minimax Problems
Decentralized Riemannian Algorithm for Nonconvex Minimax Problems
Xidong Wu
Zhengmian Hu
Heng Huang
25
15
0
08 Feb 2023
Accelerated Riemannian Optimization: Handling Constraints with a Prox to
  Bound Geometric Penalties
Accelerated Riemannian Optimization: Handling Constraints with a Prox to Bound Geometric Penalties
David Martínez-Rubio
Sebastian Pokutta
14
9
0
26 Nov 2022
Rieoptax: Riemannian Optimization in JAX
Rieoptax: Riemannian Optimization in JAX
Saiteja Utpala
Andi Han
Pratik Jawanpuria
Bamdev Mishra
21
3
0
10 Oct 2022
A Variance-Reduced Stochastic Gradient Tracking Algorithm for
  Decentralized Optimization with Orthogonality Constraints
A Variance-Reduced Stochastic Gradient Tracking Algorithm for Decentralized Optimization with Orthogonality Constraints
Lei Wang
Xin Liu
6
8
0
29 Aug 2022
Riemannian accelerated gradient methods via extrapolation
Riemannian accelerated gradient methods via extrapolation
Andi Han
Bamdev Mishra
Pratik Jawanpuria
Junbin Gao
16
7
0
13 Aug 2022
Riemannian Stochastic Gradient Method for Nested Composition
  Optimization
Riemannian Stochastic Gradient Method for Nested Composition Optimization
Dewei Zhang
S. Tajbakhsh
17
1
0
19 Jul 2022
Riemannian Natural Gradient Methods
Riemannian Natural Gradient Methods
Jiang Hu
Ruicheng Ao
Anthony Man-Cho So
Minghan Yang
Zaiwen Wen
29
10
0
15 Jul 2022
Hierarchical Symbolic Reasoning in Hyperbolic Space for Deep
  Discriminative Models
Hierarchical Symbolic Reasoning in Hyperbolic Space for Deep Discriminative Models
Ainkaran Santhirasekaram
Avinash Kori
A. Rockall
Mathias Winkler
Francesca Toni
Ben Glocker
FAtt
42
4
0
05 Jul 2022
On a class of geodesically convex optimization problems solved via
  Euclidean MM methods
On a class of geodesically convex optimization problems solved via Euclidean MM methods
Melanie Weber
S. Sra
9
4
0
22 Jun 2022
Anchor Sampling for Federated Learning with Partial Client Participation
Anchor Sampling for Federated Learning with Partial Client Participation
Feijie Wu
Song Guo
Zhihao Qu
Shiqi He
Ziming Liu
Jing Gao
FedML
28
12
0
13 Jun 2022
Federated Learning on Riemannian Manifolds
Federated Learning on Riemannian Manifolds
Jiaxiang Li
Shiqian Ma
FedML
13
13
0
12 Jun 2022
First-Order Algorithms for Min-Max Optimization in Geodesic Metric
  Spaces
First-Order Algorithms for Min-Max Optimization in Geodesic Metric Spaces
Michael I. Jordan
Tianyi Lin
Emmanouil-Vasileios Vlatakis-Gkaragkounis
29
19
0
04 Jun 2022
Momentum Stiefel Optimizer, with Applications to Suitably-Orthogonal
  Attention, and Optimal Transport
Momentum Stiefel Optimizer, with Applications to Suitably-Orthogonal Attention, and Optimal Transport
Lingkai Kong
Yuqing Wang
Molei Tao
ODL
33
9
0
27 May 2022
Differentially private Riemannian optimization
Differentially private Riemannian optimization
Andi Han
Bamdev Mishra
Pratik Jawanpuria
Junbin Gao
38
10
0
19 May 2022
Riemannian Hamiltonian methods for min-max optimization on manifolds
Riemannian Hamiltonian methods for min-max optimization on manifolds
Andi Han
Bamdev Mishra
Pratik Jawanpuria
Pawan Kumar
Junbin Gao
35
17
0
25 Apr 2022
Exploiting Low-Rank Tensor-Train Deep Neural Networks Based on
  Riemannian Gradient Descent With Illustrations of Speech Processing
Exploiting Low-Rank Tensor-Train Deep Neural Networks Based on Riemannian Gradient Descent With Illustrations of Speech Processing
Jun Qi
Chao-Han Huck Yang
Pin-Yu Chen
Javier Tejedor
25
16
0
11 Mar 2022
The Flag Median and FlagIRLS
The Flag Median and FlagIRLS
Nathan Mankovich
E. King
C. Peterson
Michael Kirby
38
9
0
08 Mar 2022
Sion's Minimax Theorem in Geodesic Metric Spaces and a Riemannian
  Extragradient Algorithm
Sion's Minimax Theorem in Geodesic Metric Spaces and a Riemannian Extragradient Algorithm
Peiyuan Zhang
J.N. Zhang
S. Sra
21
8
0
13 Feb 2022
Trivial bundle embeddings for learning graph representations
Trivial bundle embeddings for learning graph representations
Zheng Xie
Xiaojing Zuo
Yiping Song
18
0
0
05 Dec 2021
Understanding Riemannian Acceleration via a Proximal Extragradient
  Framework
Understanding Riemannian Acceleration via a Proximal Extragradient Framework
Jikai Jin
S. Sra
19
6
0
04 Nov 2021
Distributed Principal Component Analysis with Limited Communication
Distributed Principal Component Analysis with Limited Communication
Foivos Alimisis
Peter Davies
Bart Vandereycken
Dan Alistarh
32
12
0
27 Oct 2021
Projective Manifold Gradient Layer for Deep Rotation Regression
Projective Manifold Gradient Layer for Deep Rotation Regression
Jiayi Chen
Yingda Yin
Tolga Birdal
Baoquan Chen
Leonidas J. Guibas
He Wang
47
33
0
22 Oct 2021
123
Next