Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1605.07147
Cited By
Riemannian SVRG: Fast Stochastic Optimization on Riemannian Manifolds
23 May 2016
Hongyi Zhang
Sashank J. Reddi
S. Sra
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Riemannian SVRG: Fast Stochastic Optimization on Riemannian Manifolds"
50 / 118 papers shown
Title
Efficient Optimization with Orthogonality Constraint: a Randomized Riemannian Submanifold Method
Andi Han
Pierre-Louis Poirion
Akiko Takeda
2
0
0
18 May 2025
SPD Learning for Covariance-Based Neuroimaging Analysis: Perspectives, Methods, and Challenges
Ce Ju
Reinmar J. Kobler
Antoine Collas
M. Kawanabe
Cuntai Guan
Bertrand Thirion
43
0
0
26 Apr 2025
Position: Beyond Euclidean -- Foundation Models Should Embrace Non-Euclidean Geometries
Neil He
Jiahong Liu
Buze Zhang
N. Bui
Ali Maatouk
Menglin Yang
Irwin King
Melanie Weber
Rex Ying
29
0
0
11 Apr 2025
Rethinking RoPE: A Mathematical Blueprint for N-dimensional Positional Encoding
Haiping Liu
Hongpeng Zhou
AI4CE
31
0
0
07 Apr 2025
k
k
k
-SVD with Gradient Descent
Emily Gan
Yassir Jedra
Devavrat Shah
66
0
0
01 Feb 2025
Structured Regularization for Constrained Optimization on the SPD Manifold
Andrew Cheng
Melanie Weber
11
1
0
12 Oct 2024
Riemannian Federated Learning via Averaging Gradient Stream
Zhenwei Huang
Wen Huang
Pratik Jawanpuria
Bamdev Mishra
FedML
35
1
0
11 Sep 2024
Disciplined Geodesically Convex Programming
Andrew Cheng
Vaibhav Dixit
Melanie Weber
18
1
0
07 Jul 2024
Learning-Rate-Free Stochastic Optimization over Riemannian Manifolds
Daniel Dodd
Louis Sharrock
Christopher Nemeth
41
0
0
04 Jun 2024
Riemannian coordinate descent algorithms on matrix manifolds
Andi Han
Pratik Jawanpuria
Bamdev Mishra
48
5
0
04 Jun 2024
Riemannian Optimization for Active Mapping with Robot Teams
Arash Asgharivaskasi
Fritz Girke
Nikolay Atanasov
34
3
0
28 Apr 2024
Federated Learning on Riemannian Manifolds with Differential Privacy
Zhenwei Huang
Wen Huang
Pratik Jawanpuria
Bamdev Mishra
FedML
39
6
0
15 Apr 2024
FireANTs: Adaptive Riemannian Optimization for Multi-Scale Diffeomorphic Matching
Rohit Jena
Pratik Chaudhari
James C. Gee
52
2
0
01 Apr 2024
Streamlining in the Riemannian Realm: Efficient Riemannian Optimization with Loopless Variance Reduction
Yury Demidovich
Grigory Malinovsky
Peter Richtárik
56
2
0
11 Mar 2024
A Framework for Bilevel Optimization on Riemannian Manifolds
Andi Han
Bamdev Mishra
Pratik Jawanpuria
Akiko Takeda
21
4
0
06 Feb 2024
Stochastic Modified Flows for Riemannian Stochastic Gradient Descent
Benjamin Gess
Sebastian Kassing
Nimit Rana
40
0
0
02 Feb 2024
Continuous-time Riemannian SGD and SVRG Flows on Wasserstein Probabilistic Space
Mingyang Yi
Bohan Wang
32
0
0
24 Jan 2024
The Fisher-Rao geometry of CES distributions
Florent Bouchard
A. Breloy
Antoine Collas
Alexandre Renaux
G. Ginolhac
18
5
0
02 Oct 2023
RSAM: Learning on manifolds with Riemannian Sharpness-aware Minimization
Kenneth Allen
Hoang-Phi Nguyen
Tung Pham
Ming-Jun Lai
Mehrtash Harandi
Dinh Q. Phung
Trung Le
AAML
40
3
0
29 Sep 2023
Zeroth-order Riemannian Averaging Stochastic Approximation Algorithms
Jiaxiang Li
Krishnakumar Balasubramanian
Shiqian Ma
19
2
0
25 Sep 2023
Curvature-Independent Last-Iterate Convergence for Games on Riemannian Manifolds
Yong Cai
Michael I. Jordan
Tianyi Lin
Argyris Oikonomou
Emmanouil-Vasileios Vlatakis-Gkaragkounis
30
4
0
29 Jun 2023
Accelerated Methods for Riemannian Min-Max Optimization Ensuring Bounded Geometric Penalties
David Martínez-Rubio
Christophe Roux
Christopher Criscitiello
Sebastian Pokutta
22
6
0
25 May 2023
Low-complexity subspace-descent over symmetric positive definite manifold
Yogesh Darmwal
K. Rajawat
44
3
0
03 May 2023
Infeasible Deterministic, Stochastic, and Variance-Reduction Algorithms for Optimization under Orthogonality Constraints
Pierre Ablin
Simon Vary
Bin Gao
P.-A. Absil
54
7
0
29 Mar 2023
Convergence of variational Monte Carlo simulation and scale-invariant pre-training
Nilin Abrahamsen
Zhiyan Ding
Gil Goldshlager
Lin Lin
DRL
35
2
0
21 Mar 2023
Particle-based Online Bayesian Sampling
Yifan Yang
Chang-rui Liu
Zhengze Zhang
BDL
19
7
0
28 Feb 2023
Faster Riemannian Newton-type Optimization by Subsampling and Cubic Regularization
Yian Deng
Tingting Mu
21
1
0
22 Feb 2023
Constrained Empirical Risk Minimization: Theory and Practice
Eric Marcus
Ray Sheombarsing
J. Sonke
Jonas Teuwen
15
1
0
09 Feb 2023
Decentralized Riemannian Algorithm for Nonconvex Minimax Problems
Xidong Wu
Zhengmian Hu
Heng Huang
25
15
0
08 Feb 2023
Accelerated Riemannian Optimization: Handling Constraints with a Prox to Bound Geometric Penalties
David Martínez-Rubio
Sebastian Pokutta
14
9
0
26 Nov 2022
Rieoptax: Riemannian Optimization in JAX
Saiteja Utpala
Andi Han
Pratik Jawanpuria
Bamdev Mishra
21
3
0
10 Oct 2022
A Variance-Reduced Stochastic Gradient Tracking Algorithm for Decentralized Optimization with Orthogonality Constraints
Lei Wang
Xin Liu
6
8
0
29 Aug 2022
Riemannian accelerated gradient methods via extrapolation
Andi Han
Bamdev Mishra
Pratik Jawanpuria
Junbin Gao
16
7
0
13 Aug 2022
Riemannian Stochastic Gradient Method for Nested Composition Optimization
Dewei Zhang
S. Tajbakhsh
17
1
0
19 Jul 2022
Riemannian Natural Gradient Methods
Jiang Hu
Ruicheng Ao
Anthony Man-Cho So
Minghan Yang
Zaiwen Wen
29
10
0
15 Jul 2022
Hierarchical Symbolic Reasoning in Hyperbolic Space for Deep Discriminative Models
Ainkaran Santhirasekaram
Avinash Kori
A. Rockall
Mathias Winkler
Francesca Toni
Ben Glocker
FAtt
42
4
0
05 Jul 2022
On a class of geodesically convex optimization problems solved via Euclidean MM methods
Melanie Weber
S. Sra
9
4
0
22 Jun 2022
Anchor Sampling for Federated Learning with Partial Client Participation
Feijie Wu
Song Guo
Zhihao Qu
Shiqi He
Ziming Liu
Jing Gao
FedML
28
12
0
13 Jun 2022
Federated Learning on Riemannian Manifolds
Jiaxiang Li
Shiqian Ma
FedML
13
13
0
12 Jun 2022
First-Order Algorithms for Min-Max Optimization in Geodesic Metric Spaces
Michael I. Jordan
Tianyi Lin
Emmanouil-Vasileios Vlatakis-Gkaragkounis
29
19
0
04 Jun 2022
Momentum Stiefel Optimizer, with Applications to Suitably-Orthogonal Attention, and Optimal Transport
Lingkai Kong
Yuqing Wang
Molei Tao
ODL
33
9
0
27 May 2022
Differentially private Riemannian optimization
Andi Han
Bamdev Mishra
Pratik Jawanpuria
Junbin Gao
38
10
0
19 May 2022
Riemannian Hamiltonian methods for min-max optimization on manifolds
Andi Han
Bamdev Mishra
Pratik Jawanpuria
Pawan Kumar
Junbin Gao
35
17
0
25 Apr 2022
Exploiting Low-Rank Tensor-Train Deep Neural Networks Based on Riemannian Gradient Descent With Illustrations of Speech Processing
Jun Qi
Chao-Han Huck Yang
Pin-Yu Chen
Javier Tejedor
25
16
0
11 Mar 2022
The Flag Median and FlagIRLS
Nathan Mankovich
E. King
C. Peterson
Michael Kirby
38
9
0
08 Mar 2022
Sion's Minimax Theorem in Geodesic Metric Spaces and a Riemannian Extragradient Algorithm
Peiyuan Zhang
J.N. Zhang
S. Sra
21
8
0
13 Feb 2022
Trivial bundle embeddings for learning graph representations
Zheng Xie
Xiaojing Zuo
Yiping Song
18
0
0
05 Dec 2021
Understanding Riemannian Acceleration via a Proximal Extragradient Framework
Jikai Jin
S. Sra
19
6
0
04 Nov 2021
Distributed Principal Component Analysis with Limited Communication
Foivos Alimisis
Peter Davies
Bart Vandereycken
Dan Alistarh
32
12
0
27 Oct 2021
Projective Manifold Gradient Layer for Deep Rotation Regression
Jiayi Chen
Yingda Yin
Tolga Birdal
Baoquan Chen
Leonidas J. Guibas
He Wang
47
33
0
22 Oct 2021
1
2
3
Next