ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.05261
18
1

Disciplined Geodesically Convex Programming

7 July 2024
Andrew Cheng
Vaibhav Dixit
Melanie Weber
ArXivPDFHTML
Abstract

Convex programming plays a fundamental role in machine learning, data science, and engineering. Testing convexity structure in nonlinear programs relies on verifying the convexity of objectives and constraints. \citet{grant2006disciplined} introduced a framework, Disciplined Convex Programming (DCP), for automating this verification task for a wide range of convex functions that can be decomposed into basic convex functions (atoms) using convexity-preserving compositions and transformations (rules). However, the restriction to Euclidean convexity concepts can limit the applicability of the framework. For instance, many notable instances of statistical estimators and matrix-valued (sub)routines in machine learning applications are Euclidean non-convex, but exhibit geodesic convexity through a more general Riemannian lens. In this work, we extend disciplined programming to this setting by introducing Disciplined Geodesically Convex Programming (DGCP). We determine convexity-preserving compositions and transformations for geodesically convex functions on general Cartan-Hadamard manifolds, as well as for the special case of symmetric positive definite matrices, a common setting in matrix-valued optimization. For the latter, we also define a basic set of atoms. Our paper is accompanied by a Julia package SymbolicAnalysis.jl, which provides functionality for testing and certifying DGCP-compliant expressions. Our library interfaces with manifold optimization software, which allows for directly solving verified geodesically convex programs.

View on arXiv
Comments on this paper