Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1605.07147
Cited By
Riemannian SVRG: Fast Stochastic Optimization on Riemannian Manifolds
23 May 2016
Hongyi Zhang
Sashank J. Reddi
S. Sra
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Riemannian SVRG: Fast Stochastic Optimization on Riemannian Manifolds"
50 / 118 papers shown
Title
From the Greene--Wu Convolution to Gradient Estimation over Riemannian Manifolds
Tianyu Wang
Yifeng Huang
Didong Li
17
8
0
17 Aug 2021
Hyperbolic Busemann Learning with Ideal Prototypes
Mina Ghadimi Atigh
Martin Keller-Ressel
Pascal Mettes
33
36
0
28 Jun 2021
On Riemannian Optimization over Positive Definite Matrices with the Bures-Wasserstein Geometry
Andi Han
Bamdev Mishra
Pratik Jawanpuria
Junbin Gao
11
38
0
01 Jun 2021
On Riemannian Stochastic Approximation Schemes with Fixed Step-Size
Alain Durmus
P. Jiménez
Eric Moulines
Salem Said
29
12
0
15 Feb 2021
No-go Theorem for Acceleration in the Hyperbolic Plane
Linus Hamilton
Ankur Moitra
19
21
0
14 Jan 2021
Stochastic Approximation for Online Tensorial Independent Component Analysis
C. J. Li
Michael I. Jordan
30
2
0
28 Dec 2020
Variational Transport: A Convergent Particle-BasedAlgorithm for Distributional Optimization
Zhuoran Yang
Yufeng Zhang
Yongxin Chen
Zhaoran Wang
OT
38
5
0
21 Dec 2020
Global Riemannian Acceleration in Hyperbolic and Spherical Spaces
David Martínez-Rubio
40
19
0
07 Dec 2020
Escape saddle points faster on manifolds via perturbed Riemannian stochastic recursive gradient
Andi Han
Junbin Gao
22
5
0
23 Oct 2020
Accelerated Algorithms for Convex and Non-Convex Optimization on Manifolds
Lizhen Lin
B. Saparbayeva
M. Zhang
David B. Dunson
20
7
0
18 Oct 2020
Adaptive and Momentum Methods on Manifolds Through Trivializations
Mario Lezcano Casado
9
8
0
09 Oct 2020
Unsupervised Deep Metric Learning via Orthogonality based Probabilistic Loss
U. Dutta
Mehrtash Harandi
C. Sekhar
SSL
12
16
0
22 Aug 2020
Riemannian stochastic recursive momentum method for non-convex optimization
Andi Han
Junbin Gao
ODL
28
17
0
11 Aug 2020
Curvature-Dependant Global Convergence Rates for Optimization on Manifolds of Bounded Geometry
Mario Lezcano-Casado
19
12
0
06 Aug 2020
Variance reduction for Riemannian non-convex optimization with batch size adaptation
Andi Han
Junbin Gao
21
5
0
03 Jul 2020
Projection Robust Wasserstein Distance and Riemannian Optimization
Tianyi Lin
Chenyou Fan
Nhat Ho
Marco Cuturi
Michael I. Jordan
12
68
0
12 Jun 2020
Convergence Analysis of Riemannian Stochastic Approximation Schemes
Alain Durmus
P. Jiménez
Eric Moulines
Salem Said
Hoi-To Wai
19
10
0
27 May 2020
Riemannian Proximal Policy Optimization
Shijun Wang
Baocheng Zhu
Chen Li
Mingzhe Wu
James Y. Zhang
Wei Chu
Yuan Qi
21
3
0
19 May 2020
A Riemannian Primal-dual Algorithm Based on Proximal Operator and its Application in Metric Learning
Shijun Wang
Baocheng Zhu
Lintao Ma
Yuan Qi
8
0
0
19 May 2020
Scaling-up Distributed Processing of Data Streams for Machine Learning
M. Nokleby
Haroon Raja
W. Bajwa
8
15
0
18 May 2020
Learning Polynomials of Few Relevant Dimensions
Sitan Chen
Raghu Meka
15
38
0
28 Apr 2020
Stochastic Zeroth-order Riemannian Derivative Estimation and Optimization
Jiaxiang Li
Krishnakumar Balasubramanian
Shiqian Ma
4
5
0
25 Mar 2020
Bounding the expected run-time of nonconvex optimization with early stopping
Thomas Flynn
K. Yu
A. Malik
Nicolas DÍmperio
Shinjae Yoo
13
2
0
20 Feb 2020
Variational Optimization on Lie Groups, with Examples of Leading (Generalized) Eigenvalue Problems
Molei Tao
T. Ohsawa
DRL
8
17
0
27 Jan 2020
From Nesterov's Estimate Sequence to Riemannian Acceleration
Kwangjun Ahn
S. Sra
22
73
0
24 Jan 2020
Tangent Space Separability in Feedforward Neural Networks
Balint Daroczy
Rita Aleksziev
András A. Benczúr
8
3
0
18 Dec 2019
Walking on the Edge: Fast, Low-Distortion Adversarial Examples
Hanwei Zhang
Yannis Avrithis
Teddy Furon
Laurent Amsaleg
AAML
12
45
0
04 Dec 2019
Unsupervised Hierarchy Matching with Optimal Transport over Hyperbolic Spaces
David Alvarez-Melis
Youssef Mroueh
Tommi Jaakkola
OT
16
24
0
06 Nov 2019
Hyperbolic Graph Convolutional Neural Networks
Ines Chami
Rex Ying
Christopher Ré
J. Leskovec
GNN
32
629
0
28 Oct 2019
A Stochastic Extra-Step Quasi-Newton Method for Nonsmooth Nonconvex Optimization
Minghan Yang
Andre Milzarek
Zaiwen Wen
Tong Zhang
ODL
9
36
0
21 Oct 2019
Calculating Optimistic Likelihoods Using (Geodesically) Convex Optimization
Viet Anh Nguyen
Soroosh Shafieezadeh-Abadeh
Man-Chung Yue
Daniel Kuhn
W. Wiesemann
6
23
0
17 Oct 2019
Projection-free nonconvex stochastic optimization on Riemannian manifolds
Melanie Weber
S. Sra
29
17
0
09 Oct 2019
Generating valid Euclidean distance matrices
Moritz Hoffmann
Frank Noé
21
56
0
07 Oct 2019
Trivializations for Gradient-Based Optimization on Manifolds
Mario Lezcano Casado
11
122
0
20 Sep 2019
Escaping from saddle points on Riemannian manifolds
Yue Sun
Nicolas Flammarion
Maryam Fazel
31
71
0
18 Jun 2019
Efficiently escaping saddle points on manifolds
Christopher Criscitiello
Nicolas Boumal
17
62
0
10 Jun 2019
Solving general elliptical mixture models through an approximate Wasserstein manifold
Shengxi Li
Zeyang Yu
Min Xiang
Danilo P. Mandic
13
3
0
09 Jun 2019
Manifold Optimization Assisted Gaussian Variational Approximation
Bingxin Zhou
Junbin Gao
Minh-Ngoc Tran
Richard Gerlach
11
6
0
11 Feb 2019
Riemannian adaptive stochastic gradient algorithms on matrix manifolds
Hiroyuki Kasai
Pratik Jawanpuria
Bamdev Mishra
23
3
0
04 Feb 2019
Cheap Orthogonal Constraints in Neural Networks: A Simple Parametrization of the Orthogonal and Unitary Group
Mario Lezcano Casado
David Martínez-Rubio
21
194
0
24 Jan 2019
R-SPIDER: A Fast Riemannian Stochastic Optimization Algorithm with Curvature Independent Rate
J.N. Zhang
Hongyi Zhang
S. Sra
26
39
0
10 Nov 2018
Proximal Gradient Method for Nonsmooth Optimization over the Stiefel Manifold
Shixiang Chen
Shiqian Ma
Anthony Man-Cho So
Tong Zhang
21
15
0
02 Nov 2018
McTorch, a manifold optimization library for deep learning
Mayank Meghwanshi
Pratik Jawanpuria
Anoop Kunchukuttan
Hiroyuki Kasai
Bamdev Mishra
AI4CE
12
41
0
03 Oct 2018
Riemannian Adaptive Optimization Methods
Gary Bécigneul
O. Ganea
ODL
16
249
0
01 Oct 2018
Expressive power of outer product manifolds on feed-forward neural networks
Balint Daroczy
Rita Aleksziev
András A. Benczúr
11
0
0
17 Jul 2018
Understanding and Accelerating Particle-Based Variational Inference
Chang-rui Liu
Jingwei Zhuo
Pengyu Cheng
Ruiyi Zhang
Jun Zhu
Lawrence Carin
11
14
0
04 Jul 2018
Towards Riemannian Accelerated Gradient Methods
Hongyi Zhang
S. Sra
11
53
0
07 Jun 2018
Stable Geodesic Update on Hyperbolic Space and its Application to Poincare Embeddings
Y. Enokida
Atsushi Suzuki
Kenji Yamanishi
9
1
0
26 May 2018
Fast, asymptotically efficient, recursive estimation in a Riemannian manifold
Jialun Zhou
Salem Said
19
7
0
17 May 2018
Accelerated Optimization in the PDE Framework: Formulations for the Manifold of Diffeomorphisms
G. Sundaramoorthi
A. Yezzi
22
3
0
04 Apr 2018
Previous
1
2
3
Next