ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.06197
  4. Cited By
Stick-Breaking Variational Autoencoders

Stick-Breaking Variational Autoencoders

20 May 2016
Marco Cote
Padhraic Smyth
    BDL
    DRL
ArXivPDFHTML

Papers citing "Stick-Breaking Variational Autoencoders"

39 / 39 papers shown
Title
Stabilizing the Kumaraswamy Distribution
Stabilizing the Kumaraswamy Distribution
Max Wasserman
Gonzalo Mateos
BDL
47
0
0
01 Oct 2024
On Kernel-based Variational Autoencoder
On Kernel-based Variational Autoencoder
Tian Qin
Wei-Min Huang
DRL
BDL
71
1
0
21 May 2024
The VampPrior Mixture Model
The VampPrior Mixture Model
Andrew Stirn
David A. Knowles
BDL
34
1
0
06 Feb 2024
Diffusion Models with Deterministic Normalizing Flow Priors
Diffusion Models with Deterministic Normalizing Flow Priors
Mohsen Zand
Ali Etemad
Michael A. Greenspan
DiffM
34
2
0
03 Sep 2023
DIVA: A Dirichlet Process Mixtures Based Incremental Deep Clustering
  Algorithm via Variational Auto-Encoder
DIVA: A Dirichlet Process Mixtures Based Incremental Deep Clustering Algorithm via Variational Auto-Encoder
Zhenshan Bing
Y. Meng
Yuqi Yun
Hang Su
Xiaojie Su
Kai-Qi Huang
Alois C. Knoll
BDL
19
1
0
23 May 2023
Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes
Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes
Ba-Hien Tran
Babak Shahbaba
Stephan Mandt
Maurizio Filippone
SyDa
BDL
UQCV
34
5
0
09 Feb 2023
Learning and Predicting Multimodal Vehicle Action Distributions in a
  Unified Probabilistic Model Without Labels
Learning and Predicting Multimodal Vehicle Action Distributions in a Unified Probabilistic Model Without Labels
Charles Richter
Patrick R. Barragán
S. Karaman
SSL
12
1
0
14 Dec 2022
Differentiable Causal Discovery Under Latent Interventions
Differentiable Causal Discovery Under Latent Interventions
Gonccalo R. A. Faria
André F. T. Martins
Mário A. T. Figueiredo
BDL
CML
OOD
45
23
0
04 Mar 2022
Bayesian Nonparametrics for Offline Skill Discovery
Bayesian Nonparametrics for Offline Skill Discovery
Valentin Villecroze
H. Braviner
Panteha Naderian
Chris J. Maddison
G. Loaiza-Ganem
BDL
OffRL
26
8
0
09 Feb 2022
Deep Adaptive Multi-Intention Inverse Reinforcement Learning
Deep Adaptive Multi-Intention Inverse Reinforcement Learning
Ariyan Bighashdel
Panagiotis Meletis
P. Jancura
Gijs Dubbelman
25
7
0
14 Jul 2021
Meta-learning Amidst Heterogeneity and Ambiguity
Meta-learning Amidst Heterogeneity and Ambiguity
Kyeongryeol Go
Seyoung Yun
39
1
0
05 Jul 2021
PriorGrad: Improving Conditional Denoising Diffusion Models with
  Data-Dependent Adaptive Prior
PriorGrad: Improving Conditional Denoising Diffusion Models with Data-Dependent Adaptive Prior
Sang-gil Lee
Heeseung Kim
Chaehun Shin
Xu Tan
Chang-Shu Liu
Qi Meng
Tao Qin
Wei Chen
Sung-Hoon Yoon
Tie-Yan Liu
DiffM
29
82
0
11 Jun 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
38
124
0
14 May 2021
GENESIS-V2: Inferring Unordered Object Representations without Iterative
  Refinement
GENESIS-V2: Inferring Unordered Object Representations without Iterative Refinement
Martin Engelcke
Oiwi Parker Jones
Ingmar Posner
OCL
37
115
0
20 Apr 2021
Dirichlet Graph Variational Autoencoder
Dirichlet Graph Variational Autoencoder
Jia Li
Tomas Yu
Jiajin Li
Honglei Zhang
Kangfei Zhao
Yu Rong
Hong Cheng
Junzhou Huang
BDL
24
52
0
09 Oct 2020
Representative-Discriminative Learning for Open-set Land Cover
  Classification of Satellite Imagery
Representative-Discriminative Learning for Open-set Land Cover Classification of Satellite Imagery
Razieh Kaviani Baghbaderani
Ying Qu
Hairong Qi
Craig Stutts
14
17
0
21 Jul 2020
Unsupervised Pansharpening Based on Self-Attention Mechanism
Unsupervised Pansharpening Based on Self-Attention Mechanism
Ying Qu
Razieh Kaviani Baghbaderani
Hairong Qi
C. Kwan
33
69
0
16 Jun 2020
Variational Autoencoder with Embedded Student-$t$ Mixture Model for
  Authorship Attribution
Variational Autoencoder with Embedded Student-ttt Mixture Model for Authorship Attribution
Benedikt T. Boenninghoff
Steffen Zeiler
R. M. Nickel
D. Kolossa
BDL
DRL
33
2
0
28 May 2020
Deep Learning for Insider Threat Detection: Review, Challenges and
  Opportunities
Deep Learning for Insider Threat Detection: Review, Challenges and Opportunities
Shuhan Yuan
Xintao Wu
AAML
20
158
0
25 May 2020
Variational Autoencoders with Riemannian Brownian Motion Priors
Variational Autoencoders with Riemannian Brownian Motion Priors
Dimitris Kalatzis
David Eklund
Georgios Arvanitidis
Søren Hauberg
BDL
DRL
60
48
0
12 Feb 2020
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Andres Potapczynski
G. Loaiza-Ganem
John P. Cunningham
32
29
0
19 Dec 2019
Enhancing VAEs for Collaborative Filtering: Flexible Priors & Gating
  Mechanisms
Enhancing VAEs for Collaborative Filtering: Flexible Priors & Gating Mechanisms
Daeryong Kim
B. Suh
24
50
0
03 Nov 2019
A Latent Morphology Model for Open-Vocabulary Neural Machine Translation
A Latent Morphology Model for Open-Vocabulary Neural Machine Translation
Duygu Ataman
Wilker Aziz
Alexandra Birch
27
16
0
30 Oct 2019
Conditional Flow Variational Autoencoders for Structured Sequence
  Prediction
Conditional Flow Variational Autoencoders for Structured Sequence Prediction
Apratim Bhattacharyya
M. Hanselmann
Mario Fritz
Bernt Schiele
C. Straehle
BDL
DRL
AI4TS
27
84
0
24 Aug 2019
On the Necessity and Effectiveness of Learning the Prior of Variational
  Auto-Encoder
On the Necessity and Effectiveness of Learning the Prior of Variational Auto-Encoder
Haowen Xu
Wenxiao Chen
Jinlin Lai
Zhihan Li
Youjian Zhao
Dan Pei
DRL
BDL
38
14
0
31 May 2019
Interpretable Neural Predictions with Differentiable Binary Variables
Interpretable Neural Predictions with Differentiable Binary Variables
Jasmijn Bastings
Wilker Aziz
Ivan Titov
32
212
0
20 May 2019
Stochastic Blockmodels meet Graph Neural Networks
Stochastic Blockmodels meet Graph Neural Networks
Nikhil Mehta
Lawrence Carin
Piyush Rai
BDL
35
80
0
14 May 2019
Effective Estimation of Deep Generative Language Models
Effective Estimation of Deep Generative Language Models
Tom Pelsmaeker
Wilker Aziz
BDL
24
27
0
17 Apr 2019
Variational AutoEncoder For Regression: Application to Brain Aging
  Analysis
Variational AutoEncoder For Regression: Application to Brain Aging Analysis
Qingyu Zhao
Ehsan Adeli
N. Honnorat
Tuo Leng
K. Pohl
DRL
BDL
19
83
0
11 Apr 2019
Dirichlet Variational Autoencoder
Dirichlet Variational Autoencoder
Weonyoung Joo
Wonsung Lee
Sungrae Park
Il-Chul Moon
BDL
DRL
32
101
0
09 Jan 2019
Variational Autoencoder with Implicit Optimal Priors
Variational Autoencoder with Implicit Optimal Priors
Hiroshi Takahashi
Tomoharu Iwata
Yuki Yamanaka
Masanori Yamada
Satoshi Yagi
DRL
34
61
0
14 Sep 2018
Hyperprior Induced Unsupervised Disentanglement of Latent
  Representations
Hyperprior Induced Unsupervised Disentanglement of Latent Representations
Abdul Fatir Ansari
Harold Soh
CoGe
CML
UD
DRL
26
31
0
12 Sep 2018
Item Recommendation with Variational Autoencoders and Heterogenous
  Priors
Item Recommendation with Variational Autoencoders and Heterogenous Priors
Giannis Karamanolakis
Kevin Raji Cherian
A. Narayan
Jie Yuan
Da Tang
Tony Jebara
DRL
16
45
0
17 Jul 2018
Explorations in Homeomorphic Variational Auto-Encoding
Explorations in Homeomorphic Variational Auto-Encoding
Luca Falorsi
P. D. Haan
Tim R. Davidson
Nicola De Cao
Maurice Weiler
Patrick Forré
Taco S. Cohen
BDL
DRL
39
116
0
12 Jul 2018
New Losses for Generative Adversarial Learning
Victor Berger
Michèle Sebag
GAN
22
0
0
03 Jul 2018
Nonparametric Bayesian Deep Networks with Local Competition
Nonparametric Bayesian Deep Networks with Local Competition
Konstantinos P. Panousis
S. Chatzis
Sergios Theodoridis
BDL
27
32
0
19 May 2018
Variational Composite Autoencoders
Variational Composite Autoencoders
Jiangchao Yao
Ivor Tsang
Ya Zhang
BDL
DRL
21
0
0
12 Apr 2018
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
38
684
0
15 Nov 2017
Variational Deep Embedding: An Unsupervised and Generative Approach to
  Clustering
Variational Deep Embedding: An Unsupervised and Generative Approach to Clustering
Zhuxi Jiang
Yin Zheng
Huachun Tan
Bangsheng Tang
Hanning Zhou
BDL
DRL
30
724
0
16 Nov 2016
1