ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.04435
16
0

Variational Composite Autoencoders

12 April 2018
Jiangchao Yao
Ivor Tsang
Ya-Qin Zhang
    BDL
    DRL
ArXivPDFHTML
Abstract

Learning in the latent variable model is challenging in the presence of the complex data structure or the intractable latent variable. Previous variational autoencoders can be low effective due to the straightforward encoder-decoder structure. In this paper, we propose a variational composite autoencoder to sidestep this issue by amortizing on top of the hierarchical latent variable model. The experimental results confirm the advantages of our model.

View on arXiv
Comments on this paper