Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1603.06160
Cited By
Stochastic Variance Reduction for Nonconvex Optimization
19 March 2016
Sashank J. Reddi
Ahmed S. Hefny
S. Sra
Barnabás Póczós
Alex Smola
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Variance Reduction for Nonconvex Optimization"
50 / 111 papers shown
Title
Distributed Reinforcement Learning for Decentralized Linear Quadratic Control: A Derivative-Free Policy Optimization Approach
Yingying Li
Yujie Tang
Runyu Zhang
Na Li
21
101
0
19 Dec 2019
Fast Stochastic Ordinal Embedding with Variance Reduction and Adaptive Step Size
Ke Ma
Jinshan Zeng
Qianqian Xu
Xiaochun Cao
Wei Liu
Yuan Yao
28
3
0
01 Dec 2019
On the Global Convergence of (Fast) Incremental Expectation Maximization Methods
Belhal Karimi
Hoi-To Wai
Eric Moulines
M. Lavielle
32
27
0
28 Oct 2019
History-Gradient Aided Batch Size Adaptation for Variance Reduced Algorithms
Kaiyi Ji
Zhe Wang
Bowen Weng
Yi Zhou
Wei Zhang
Yingbin Liang
ODL
18
5
0
21 Oct 2019
Sample Efficient Policy Gradient Methods with Recursive Variance Reduction
Pan Xu
F. Gao
Quanquan Gu
31
83
0
18 Sep 2019
Stochastic AUC Maximization with Deep Neural Networks
Mingrui Liu
Zhuoning Yuan
Yiming Ying
Tianbao Yang
17
103
0
28 Aug 2019
Second-Order Guarantees of Stochastic Gradient Descent in Non-Convex Optimization
Stefan Vlaski
Ali H. Sayed
ODL
29
21
0
19 Aug 2019
Stochastic First-order Methods for Convex and Nonconvex Functional Constrained Optimization
Digvijay Boob
Qi Deng
Guanghui Lan
52
92
0
07 Aug 2019
Distributed Inexact Successive Convex Approximation ADMM: Analysis-Part I
Sandeep Kumar
K. Rajawat
Daniel P. Palomar
19
4
0
21 Jul 2019
Global Optimality Guarantees For Policy Gradient Methods
Jalaj Bhandari
Daniel Russo
37
185
0
05 Jun 2019
Adaptively Truncating Backpropagation Through Time to Control Gradient Bias
Christopher Aicher
N. Foti
E. Fox
MQ
24
32
0
17 May 2019
Stabilized SVRG: Simple Variance Reduction for Nonconvex Optimization
Rong Ge
Zhize Li
Weiyao Wang
Xiang Wang
19
33
0
01 May 2019
Reducing Noise in GAN Training with Variance Reduced Extragradient
Tatjana Chavdarova
Gauthier Gidel
F. Fleuret
Simon Lacoste-Julien
25
134
0
18 Apr 2019
Large Batch Optimization for Deep Learning: Training BERT in 76 minutes
Yang You
Jing Li
Sashank J. Reddi
Jonathan Hseu
Sanjiv Kumar
Srinadh Bhojanapalli
Xiaodan Song
J. Demmel
Kurt Keutzer
Cho-Jui Hsieh
ODL
28
980
0
01 Apr 2019
On the Ineffectiveness of Variance Reduced Optimization for Deep Learning
Aaron Defazio
Léon Bottou
UQCV
DRL
23
112
0
11 Dec 2018
Stagewise Training Accelerates Convergence of Testing Error Over SGD
Zhuoning Yuan
Yan Yan
Rong Jin
Tianbao Yang
60
11
0
10 Dec 2018
Stochastic Optimization for DC Functions and Non-smooth Non-convex Regularizers with Non-asymptotic Convergence
Yi Tian Xu
Qi Qi
Qihang Lin
Rong Jin
Tianbao Yang
37
41
0
28 Nov 2018
R-SPIDER: A Fast Riemannian Stochastic Optimization Algorithm with Curvature Independent Rate
J.N. Zhang
Hongyi Zhang
S. Sra
26
39
0
10 Nov 2018
SpiderBoost and Momentum: Faster Stochastic Variance Reduction Algorithms
Zhe Wang
Kaiyi Ji
Yi Zhou
Yingbin Liang
Vahid Tarokh
ODL
35
81
0
25 Oct 2018
Characterization of Convex Objective Functions and Optimal Expected Convergence Rates for SGD
Marten van Dijk
Lam M. Nguyen
Phuong Ha Nguyen
Dzung Phan
36
6
0
09 Oct 2018
Continuous-time Models for Stochastic Optimization Algorithms
Antonio Orvieto
Aurelien Lucchi
19
31
0
05 Oct 2018
Weakly-Convex Concave Min-Max Optimization: Provable Algorithms and Applications in Machine Learning
Hassan Rafique
Mingrui Liu
Qihang Lin
Tianbao Yang
15
107
0
04 Oct 2018
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path Integrated Differential Estimator
Cong Fang
C. J. Li
Zhouchen Lin
Tong Zhang
50
570
0
04 Jul 2018
Stochastic Nested Variance Reduction for Nonconvex Optimization
Dongruo Zhou
Pan Xu
Quanquan Gu
25
146
0
20 Jun 2018
Closing the Generalization Gap of Adaptive Gradient Methods in Training Deep Neural Networks
Jinghui Chen
Dongruo Zhou
Yiqi Tang
Ziyan Yang
Yuan Cao
Quanquan Gu
ODL
19
193
0
18 Jun 2018
Stochastic Variance-Reduced Policy Gradient
Matteo Papini
Damiano Binaghi
Giuseppe Canonaco
Matteo Pirotta
Marcello Restelli
19
174
0
14 Jun 2018
Towards Riemannian Accelerated Gradient Methods
Hongyi Zhang
S. Sra
16
53
0
07 Jun 2018
Stochastic Zeroth-order Optimization via Variance Reduction method
L. Liu
Minhao Cheng
Cho-Jui Hsieh
Dacheng Tao
24
19
0
30 May 2018
Taming Convergence for Asynchronous Stochastic Gradient Descent with Unbounded Delay in Non-Convex Learning
Xin Zhang
Jia-Wei Liu
Zhengyuan Zhu
16
17
0
24 May 2018
Analysis of nonsmooth stochastic approximation: the differential inclusion approach
Szymon Majewski
B. Miasojedow
Eric Moulines
19
49
0
04 May 2018
Learning to Reweight Examples for Robust Deep Learning
Mengye Ren
Wenyuan Zeng
Binh Yang
R. Urtasun
OOD
NoLa
69
1,410
0
24 Mar 2018
Stochastic Variance-Reduced Cubic Regularization for Nonconvex Optimization
Zhe Wang
Yi Zhou
Yingbin Liang
Guanghui Lan
35
46
0
20 Feb 2018
Stochastic Variance-Reduced Hamilton Monte Carlo Methods
Difan Zou
Pan Xu
Quanquan Gu
BDL
27
31
0
13 Feb 2018
A Simple Proximal Stochastic Gradient Method for Nonsmooth Nonconvex Optimization
Zhize Li
Jian Li
39
116
0
13 Feb 2018
Katyusha X: Practical Momentum Method for Stochastic Sum-of-Nonconvex Optimization
Zeyuan Allen-Zhu
ODL
44
52
0
12 Feb 2018
Improved asynchronous parallel optimization analysis for stochastic incremental methods
Rémi Leblond
Fabian Pedregosa
Simon Lacoste-Julien
16
70
0
11 Jan 2018
Neon2: Finding Local Minima via First-Order Oracles
Zeyuan Allen-Zhu
Yuanzhi Li
21
130
0
17 Nov 2017
Natasha 2: Faster Non-Convex Optimization Than SGD
Zeyuan Allen-Zhu
ODL
28
245
0
29 Aug 2017
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization
Pan Xu
Jinghui Chen
Difan Zou
Quanquan Gu
31
200
0
20 Jul 2017
A Unified Analysis of Stochastic Optimization Methods Using Jump System Theory and Quadratic Constraints
Bin Hu
Peter M. Seiler
Anders Rantzer
30
35
0
25 Jun 2017
Stochastic Recursive Gradient Algorithm for Nonconvex Optimization
Lam M. Nguyen
Jie Liu
K. Scheinberg
Martin Takáč
11
94
0
20 May 2017
Sub-sampled Cubic Regularization for Non-convex Optimization
Jonas Köhler
Aurelien Lucchi
19
164
0
16 May 2017
Convergence Analysis of Proximal Gradient with Momentum for Nonconvex Optimization
Qunwei Li
Yi Zhou
Yingbin Liang
P. Varshney
21
94
0
14 May 2017
Data-Dependent Stability of Stochastic Gradient Descent
Ilja Kuzborskij
Christoph H. Lampert
MLT
9
165
0
05 Mar 2017
SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient
Lam M. Nguyen
Jie Liu
K. Scheinberg
Martin Takáč
ODL
30
597
0
01 Mar 2017
Natasha: Faster Non-Convex Stochastic Optimization Via Strongly Non-Convex Parameter
Zeyuan Allen-Zhu
20
80
0
02 Feb 2017
Stochastic Alternating Direction Method of Multipliers with Variance Reduction for Nonconvex Optimization
Feihu Huang
Songcan Chen
Zhaosong Lu
27
14
0
10 Oct 2016
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
66
1,878
0
08 Oct 2016
Less than a Single Pass: Stochastically Controlled Stochastic Gradient Method
Lihua Lei
Michael I. Jordan
29
96
0
12 Sep 2016
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
139
1,201
0
16 Aug 2016
Previous
1
2
3
Next