ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.03866
42
52

Katyusha X: Practical Momentum Method for Stochastic Sum-of-Nonconvex Optimization

12 February 2018
Zeyuan Allen-Zhu
    ODL
ArXivPDFHTML
Abstract

The problem of minimizing sum-of-nonconvex functions (i.e., convex functions that are average of non-convex ones) is becoming increasingly important in machine learning, and is the core machinery for PCA, SVD, regularized Newton's method, accelerated non-convex optimization, and more. We show how to provably obtain an accelerated stochastic algorithm for minimizing sum-of-nonconvex functions, by adding one additional line\textit{adding one additional line}adding one additional line to the well-known SVRG method. This line corresponds to momentum, and shows how to directly apply momentum to the finite-sum stochastic minimization of sum-of-nonconvex functions. As a side result, our method enjoys linear parallel speed-up using mini-batch.

View on arXiv
Comments on this paper